-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathunet.py
175 lines (143 loc) · 5.46 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- coding: utf-8 -*-
"""
The implementation is borrowed from: https://github.com/HiLab-git/PyMIC
"""
from __future__ import division, print_function
import numpy as np
import torch
import torch.nn as nn
from torch.distributions.uniform import Uniform
def kaiming_normal_init_weight(model):
for m in model.modules():
if isinstance(m, nn.Conv3d):
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
return model
def sparse_init_weight(model):
for m in model.modules():
if isinstance(m, nn.Conv3d):
torch.nn.init.sparse_(m.weight, sparsity=0.1)
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
return model
class ConvBlock(nn.Module):
"""two convolution layers with batch norm and leaky relu"""
def __init__(self, in_channels, out_channels, dropout_p):
super(ConvBlock, self).__init__()
self.conv_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(),
nn.Dropout(dropout_p),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU()
)
def forward(self, x):
return self.conv_conv(x)
class DownBlock(nn.Module):
"""Downsampling followed by ConvBlock"""
def __init__(self, in_channels, out_channels, dropout_p):
super(DownBlock, self).__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
ConvBlock(in_channels, out_channels, dropout_p)
)
def forward(self, x):
return self.maxpool_conv(x)
class UpBlock(nn.Module):
"""Upssampling followed by ConvBlock"""
def __init__(self, in_channels1, in_channels2, out_channels, dropout_p,
bilinear=True):
super(UpBlock, self).__init__()
self.bilinear = bilinear
if bilinear:
self.conv1x1 = nn.Conv2d(in_channels1, in_channels2, kernel_size=1)
self.up = nn.Upsample(
scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(
in_channels1, in_channels2, kernel_size=2, stride=2)
self.conv = ConvBlock(in_channels2 * 2, out_channels, dropout_p)
def forward(self, x1, x2):
if self.bilinear:
x1 = self.conv1x1(x1)
x1 = self.up(x1)
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, params):
super(Encoder, self).__init__()
self.params = params
self.in_chns = self.params['in_chns']
self.ft_chns = self.params['feature_chns']
self.n_class = self.params['class_num']
self.bilinear = self.params['bilinear']
self.dropout = self.params['dropout']
assert (len(self.ft_chns) == 5)
self.in_conv = ConvBlock(
self.in_chns, self.ft_chns[0], self.dropout[0])
self.down1 = DownBlock(
self.ft_chns[0], self.ft_chns[1], self.dropout[1])
self.down2 = DownBlock(
self.ft_chns[1], self.ft_chns[2], self.dropout[2])
self.down3 = DownBlock(
self.ft_chns[2], self.ft_chns[3], self.dropout[3])
self.down4 = DownBlock(
self.ft_chns[3], self.ft_chns[4], self.dropout[4])
def forward(self, x):
x0 = self.in_conv(x)
x1 = self.down1(x0)
x2 = self.down2(x1)
x3 = self.down3(x2)
x4 = self.down4(x3)
return [x0, x1, x2, x3, x4]
class Decoder(nn.Module):
def __init__(self, params):
super(Decoder, self).__init__()
self.params = params
self.in_chns = self.params['in_chns']
self.ft_chns = self.params['feature_chns']
self.n_class = self.params['class_num']
self.bilinear = self.params['bilinear']
assert (len(self.ft_chns) == 5)
self.up1 = UpBlock(
self.ft_chns[4], self.ft_chns[3], self.ft_chns[3], dropout_p=0.0)
self.up2 = UpBlock(
self.ft_chns[3], self.ft_chns[2], self.ft_chns[2], dropout_p=0.0)
self.up3 = UpBlock(
self.ft_chns[2], self.ft_chns[1], self.ft_chns[1], dropout_p=0.0)
self.up4 = UpBlock(
self.ft_chns[1], self.ft_chns[0], self.ft_chns[0], dropout_p=0.0)
self.out_conv = nn.Conv2d(self.ft_chns[0], self.n_class,
kernel_size=3, padding=1)
def forward(self, feature):
x0 = feature[0]
x1 = feature[1]
x2 = feature[2]
x3 = feature[3]
x4 = feature[4]
x = self.up1(x4, x3)
x = self.up2(x, x2)
x = self.up3(x, x1)
x = self.up4(x, x0)
output = self.out_conv(x)
return output
class UNet(nn.Module):
def __init__(self, in_chns, class_num):
super(UNet, self).__init__()
params = {'in_chns': in_chns,
'feature_chns': [16, 32, 64, 128, 256],
'dropout': [0.05, 0.1, 0.2, 0.3, 0.5],
'class_num': class_num,
'bilinear': False,
'acti_func': 'relu'}
self.encoder = Encoder(params)
self.decoder = Decoder(params)
def forward(self, x):
feature = self.encoder(x)
output = self.decoder(feature)
return output