-
Notifications
You must be signed in to change notification settings - Fork 4
/
vnet.py
258 lines (202 loc) · 9.34 KB
/
vnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import torch
from torch import nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
def __init__(self, n_stages, n_filters_in, n_filters_out, normalization='none'):
super(ConvBlock, self).__init__()
ops = []
for i in range(n_stages):
if i==0:
input_channel = n_filters_in
else:
input_channel = n_filters_out
ops.append(nn.Conv3d(input_channel, n_filters_out, 3, padding=1))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
elif normalization != 'none':
assert False
ops.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*ops)
def forward(self, x):
x = self.conv(x)
return x
class ResidualConvBlock(nn.Module):
def __init__(self, n_stages, n_filters_in, n_filters_out, normalization='none'):
super(ResidualConvBlock, self).__init__()
ops = []
for i in range(n_stages):
if i == 0:
input_channel = n_filters_in
else:
input_channel = n_filters_out
ops.append(nn.Conv3d(input_channel, n_filters_out, 3, padding=1))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
elif normalization != 'none':
assert False
if i != n_stages-1:
ops.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*ops)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = (self.conv(x) + x)
x = self.relu(x)
return x
class DownsamplingConvBlock(nn.Module):
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
super(DownsamplingConvBlock, self).__init__()
ops = []
if normalization != 'none':
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
else:
assert False
else:
ops.append(nn.Conv3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
ops.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*ops)
def forward(self, x):
x = self.conv(x)
return x
class UpsamplingDeconvBlock(nn.Module):
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
super(UpsamplingDeconvBlock, self).__init__()
ops = []
if normalization != 'none':
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
else:
assert False
else:
ops.append(nn.ConvTranspose3d(n_filters_in, n_filters_out, stride, padding=0, stride=stride))
ops.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*ops)
def forward(self, x):
x = self.conv(x)
return x
class Upsampling(nn.Module):
def __init__(self, n_filters_in, n_filters_out, stride=2, normalization='none'):
super(Upsampling, self).__init__()
ops = []
ops.append(nn.Upsample(scale_factor=stride, mode='trilinear',align_corners=False))
ops.append(nn.Conv3d(n_filters_in, n_filters_out, kernel_size=3, padding=1))
if normalization == 'batchnorm':
ops.append(nn.BatchNorm3d(n_filters_out))
elif normalization == 'groupnorm':
ops.append(nn.GroupNorm(num_groups=16, num_channels=n_filters_out))
elif normalization == 'instancenorm':
ops.append(nn.InstanceNorm3d(n_filters_out))
elif normalization != 'none':
assert False
ops.append(nn.ReLU(inplace=True))
self.conv = nn.Sequential(*ops)
def forward(self, x):
x = self.conv(x)
return x
class VNet(nn.Module):
def __init__(self, n_channels=3, n_classes=2, n_filters=32, normalization='none', has_dropout=False):
super(VNet, self).__init__()
self.has_dropout = has_dropout
self.block_one = ConvBlock(1, n_channels, n_filters, normalization=normalization)
self.block_one_dw = DownsamplingConvBlock(n_filters, 2 * n_filters, normalization=normalization)
self.block_two = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
self.block_two_dw = DownsamplingConvBlock(n_filters * 2, n_filters * 4, normalization=normalization)
self.block_three = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
self.block_three_dw = DownsamplingConvBlock(n_filters * 4, n_filters * 8, normalization=normalization)
self.block_four = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
self.block_four_dw = DownsamplingConvBlock(n_filters * 8, n_filters * 16, normalization=normalization)
self.block_five = ConvBlock(3, n_filters * 16, n_filters * 16, normalization=normalization)
self.block_five_up = UpsamplingDeconvBlock(n_filters * 16, n_filters * 8, normalization=normalization)
self.block_six = ConvBlock(3, n_filters * 8, n_filters * 8, normalization=normalization)
self.block_six_up = UpsamplingDeconvBlock(n_filters * 8, n_filters * 4, normalization=normalization)
self.block_seven = ConvBlock(3, n_filters * 4, n_filters * 4, normalization=normalization)
self.block_seven_up = UpsamplingDeconvBlock(n_filters * 4, n_filters * 2, normalization=normalization)
self.block_eight = ConvBlock(2, n_filters * 2, n_filters * 2, normalization=normalization)
self.block_eight_up = UpsamplingDeconvBlock(n_filters * 2, n_filters, normalization=normalization)
self.block_nine = ConvBlock(1, n_filters, n_filters, normalization=normalization)
self.out_conv = nn.Conv3d(n_filters, n_classes, 1, padding=0)
self.dropout = nn.Dropout3d(p=0.5, inplace=False)
# self.__init_weight()
def encoder(self, input):
x1 = self.block_one(input)
x1_dw = self.block_one_dw(x1)
x2 = self.block_two(x1_dw)
x2_dw = self.block_two_dw(x2)
x3 = self.block_three(x2_dw)
x3_dw = self.block_three_dw(x3)
x4 = self.block_four(x3_dw)
x4_dw = self.block_four_dw(x4)
x5 = self.block_five(x4_dw)
# x5 = F.dropout3d(x5, p=0.5, training=True)
if self.has_dropout:
x5 = self.dropout(x5)
res = [x1, x2, x3, x4, x5]
return res
def decoder(self, features):
x1 = features[0]
x2 = features[1]
x3 = features[2]
x4 = features[3]
x5 = features[4]
x5_up = self.block_five_up(x5)
x5_up = x5_up + x4
x6 = self.block_six(x5_up)
x6_up = self.block_six_up(x6)
x6_up = x6_up + x3
x7 = self.block_seven(x6_up)
x7_up = self.block_seven_up(x7)
x7_up = x7_up + x2
x8 = self.block_eight(x7_up)
x8_up = self.block_eight_up(x8)
x8_up = x8_up + x1
x9 = self.block_nine(x8_up)
# x9 = F.dropout3d(x9, p=0.5, training=True)
if self.has_dropout:
x9 = self.dropout(x9)
out = self.out_conv(x9)
return out
def forward(self, input, turnoff_drop=False):
if turnoff_drop:
has_dropout = self.has_dropout
self.has_dropout = False
features = self.encoder(input)
out = self.decoder(features)
if turnoff_drop:
self.has_dropout = has_dropout
return out
# def __init_weight(self):
# for m in self.modules():
# if isinstance(m, nn.Conv3d):
# torch.nn.init.kaiming_normal_(m.weight)
# elif isinstance(m, nn.BatchNorm3d):
# m.weight.data.fill_(1)
# m.bias.data.zero_()
# if __name__ == '__main__':
# # compute FLOPS & PARAMETERS
# from thop import profile
# from thop import clever_format
# model = VNet(n_channels=1, n_classes=2)
# input = torch.randn(4, 1, 112, 112, 80)
# flops, params = profile(model, inputs=(input,))
# print(flops, params)
# macs, params = clever_format([flops, params], "%.3f")
# print(macs, params)
# print("VNet have {} paramerters in total".format(sum(x.numel() for x in model.parameters())))