From eb37533189123e83089b760bb68743d4fe165465 Mon Sep 17 00:00:00 2001 From: Avik Pal Date: Mon, 9 Sep 2024 14:39:08 -0400 Subject: [PATCH] fix: update symbolic optimal control tutorial --- examples/SymbolicOptimalControl/Project.toml | 6 +++--- examples/SymbolicOptimalControl/main.jl | 4 ++-- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/examples/SymbolicOptimalControl/Project.toml b/examples/SymbolicOptimalControl/Project.toml index f5e3c411..dfb351cf 100644 --- a/examples/SymbolicOptimalControl/Project.toml +++ b/examples/SymbolicOptimalControl/Project.toml @@ -11,7 +11,7 @@ MLJ = "add582a8-e3ab-11e8-2d5e-e98b27df1bc7" Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba" OptimizationOptimJL = "36348300-93cb-4f02-beb5-3c3902f8871e" OptimizationOptimisers = "42dfb2eb-d2b4-4451-abcd-913932933ac1" -OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed" +OrdinaryDiffEqVerner = "79d7bb75-1356-48c1-b8c0-6832512096c2" Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" SciMLSensitivity = "1ed8b502-d754-442c-8d5d-10ac956f44a1" @@ -31,8 +31,8 @@ MLJ = "0.20.3" Optimization = "3.24.3" OptimizationOptimJL = "0.2.3, 0.3" OptimizationOptimisers = "0.2.1" -OrdinaryDiffEq = "6.74.1" +OrdinaryDiffEqVerner = "1" SciMLSensitivity = "7.57" -Statistics = "1.11" +Statistics = "1.10" SymbolicRegression = "0.24.1" SymbolicUtils = "1.5.1, 2, 3" diff --git a/examples/SymbolicOptimalControl/main.jl b/examples/SymbolicOptimalControl/main.jl index 6a03a0fc..4ac793da 100644 --- a/examples/SymbolicOptimalControl/main.jl +++ b/examples/SymbolicOptimalControl/main.jl @@ -32,7 +32,7 @@ # ## Package Imports -using Lux, Boltz, ComponentArrays, OrdinaryDiffEq, Optimization, OptimizationOptimJL, +using Lux, Boltz, ComponentArrays, OrdinaryDiffEqVerner, Optimization, OptimizationOptimJL, OptimizationOptimisers, SciMLSensitivity, Statistics, Printf, Random using DynamicExpressions, SymbolicRegression, MLJ, SymbolicUtils, Latexify using CairoMakie @@ -96,7 +96,7 @@ ude_test = construct_ude(mlp, Vern9(); abstol=1e-10, reltol=1e-10); function train_model_1(ude, rng, ts_) ps, st = Lux.setup(rng, ude) ps = ComponentArray{Float64}(ps) - stateful_ude = StatefulLuxLayer(ude, st) + stateful_ude = StatefulLuxLayer{true}(ude, nothing, st) ts = collect(ts_)