forked from JaywayXu/TF_Cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Datareader.py
134 lines (121 loc) · 5.89 KB
/
Datareader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Using a Multiple Layer Network
# ---------------------------------------
# 使用多层神经网络层构造神经网络
# We will illustrate how to use a Multiple
# Layer Network in TensorFlow
#
# Low Birthrate data:
#
# Columns(列) Variable(值) Abbreviation
# -----------------------------------------------------------------------------
# Low Birth Weight (0 = Birth Weight >= 2500g, LOW
# 1 = Birth Weight < 2500g)
# 低出生体重
# Age of the Mother in Years AGE
# 母亲妊娠年龄
# Weight in Pounds at the Last Menstrual Period LWT
# 在最后一次月经期间体重增加。
# Race (1 = White, 2 = Black, 3 = Other) RACE
# 肤色
# Smoking Status During Pregnancy (1 = Yes, 0 = No) SMOKE
# 怀孕期间吸烟状态
# History of Premature Labor (0 = None 1 = One, etc.) PTL
# 早产的历史
# History of Hypertension (1 = Yes, 0 = No) HT
# 高血压历史
# Presence of Uterine Irritability (1 = Yes, 0 = No) UI
# 子宫刺激性的存在
# Birth Weight in Grams BWT
# 以克为单位的体重
# ------------------------------
# The multiple neural network layer we will create will be composed of
# three fully connected hidden layers, with node sizes 25, 10, and 5
import tensorflow as tf
import matplotlib.pyplot as plt
import csv
import os
import numpy as np
import random
import requests
from tensorflow.python.framework import ops
# name of data file
# 数据集名称
birth_weight_file = 'birth_weight.csv'
# download data and create data file if file does not exist in current directory
# 如果当前文件夹下没有birth_weight.csv数据集则下载dat文件并生成csv文件
if not os.path.exists(birth_weight_file):
birthdata_url = 'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split('\r\n')
# split分割函数,以一行作为分割函数,windows中换行符号为'\r\n',每一行后面都有一个'\r\n'符号。
birth_header = birth_data[0].split('\t')
# 每一列的标题,标在第一行,即是birth_data的第一个数据。并使用制表符作为划分。
birth_data = [[float(x) for x in y.split('\t') if len(x) >= 1] for y in birth_data[1:] if len(y) >= 1]
print(np.array(birth_data).shape)
# (189, 9)
# 此为list数据形式不是numpy数组不能使用np,shape函数,但是我们可以使用np.array函数将list对象转化为numpy数组后使用shape属性进行查看。
with open(birth_weight_file, "w", newline='') as f:
writer = csv.writer(f)
writer.writerows([birth_header])
writer.writerows(birth_data)
f.close()
# read birth weight data into memory将出生体重数据读进内存
birth_data = []
with open(birth_weight_file) as csvfile:
csv_reader = csv.reader(csvfile) # 使用csv.reader读取csvfile中的文件
birth_header = next(csv_reader) # 读取第一行每一列的标题
for row in csv_reader: # 将csv 文件中的数据保存到birth_data中
birth_data.append(row)
birth_data = [[float(x) for x in row] for row in birth_data] # 将数据从string形式转换为float形式
birth_data = np.array(birth_data) # 将list数组转化成array数组便于查看数据结构
birth_header = np.array(birth_header)
# print(birth_data.shape) # 利用.shape查看结构。
# print(birth_header.shape)
#
# (189, 9)
# (9,)
import pandas as pd
csv_data = pd.read_csv('birth_weight.csv') # 读取训练数据
# print(csv_data.shape) # (189, 9)
N = 5
csv_batch_data = csv_data.tail(N) # 取后5条数据
# print(csv_batch_data.shape) # (5, 9)
train_batch_data = csv_batch_data[list(range(3, 6))] # 取这20条数据的3到5列值(索引从0开始)
# print(train_batch_data)
# RACE SMOKE PTL
# 184 0.0 0.0 0.0
# 185 0.0 0.0 1.0
# 186 0.0 1.0 0.0
# 187 0.0 0.0 0.0
# 188 0.0 0.0 1.0
'''使用Tensorflow读取csv数据'''
filename = 'birth_weight.csv'
file_queue = tf.train.string_input_producer([filename]) # 设置文件名队列,这样做能够批量读取文件夹中的文件
reader = tf.TextLineReader(skip_header_lines=1) # 使用tensorflow文本行阅读器,并且设置忽略第一行
key, value = reader.read(file_queue)
defaults = [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.]] # 设置列属性的数据格式
LOW, AGE, LWT, RACE, SMOKE, PTL, HT, UI, BWT = tf.decode_csv(value, defaults)
# 将读取的数据编码为我们设置的默认格式
vertor_example = tf.stack([AGE, LWT, RACE, SMOKE, PTL, HT, UI]) # 读取得到的中间7列属性为训练特征
vertor_label = tf.stack([BWT]) # 读取得到的BWT值表示训练标签
# 用于给取出的数据添加上batch_size维度,以批处理的方式读出数据。可以设置批处理数据大小,是否重复读取数据,容量大小,队列末尾大小,读取线程等属性。
example_batch, label_batch = tf.train.shuffle_batch([vertor_example, vertor_label], batch_size=10, capacity=100,
min_after_dequeue=10)
# 初始化Session
with tf.Session() as sess:
coord = tf.train.Coordinator() # 线程管理器
threads = tf.train.start_queue_runners(coord=coord)
print(sess.run(tf.shape(example_batch))) # [10 7]
print(sess.run(tf.shape(label_batch))) # [10 1]
print(sess.run(example_batch)[3]) # [ 19. 91. 0. 1. 1. 0. 1.]
coord.request_stop()
coord.join(threads)
'''
对于使用所有Tensorflow的I/O操作来说开启和关闭线程管理器都是必要的操作
with tf.Session() as sess:
coord = tf.train.Coordinator() # 线程管理器
threads = tf.train.start_queue_runners(coord=coord)
# Your code here~
coord.request_stop()
coord.join(threads)
'''