forked from chaoyi-wu/Finetune_LLAMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune_pp.py
177 lines (149 loc) · 5.79 KB
/
finetune_pp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse
import os
import math
import tqdm.auto as tqdm
import json
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
import datasets
import transformers
import os
def read_json(path):
with open(path, "r") as f:
return json.load(f)
def move_to_device(*x_list, device):
if len(x_list) > 1:
return tuple([x.to(device) for x in x_list])
else:
return x_list[0].to(device)
def get_devices():
return [
torch.device(f"cuda:{i}")
for i in range(torch.cuda.device_count())
]
def model_forward(model, inputs):
'''
Note that this codes are used for debugging or simple classification.
'''
h = inputs
h = h.to(model.model.embed_tokens.weight.device)
h = model.model.embed_tokens(h)
for layer in model.model.layers:
h = h.to(layer.input_layernorm.weight.device)
h = layer(h)[0]
h = h.to(model.model.norm.weight.device)
h = model.model.norm(h)
h = model.lm_head(h)
return h
class DatasetDataset(torch.utils.data.Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return (
torch.LongTensor(self.dataset[idx]["input_ids"]),
torch.LongTensor(self.dataset[idx]["input_ids"]),
)
# From DeepSpeed
class RepeatingLoader:
def __init__(self, loader):
"""Wraps an iterator to allow for infinite iteration. This is especially useful
for DataLoader types that we wish to automatically restart upon completion.
Args:
loader (iterator): The data loader to repeat.
"""
self.loader = loader
self.data_iter = iter(self.loader)
def __iter__(self):
return self
def __next__(self):
try:
batch = next(self.data_iter)
except StopIteration:
self.data_iter = iter(self.loader)
batch = next(self.data_iter)
return batch
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str,default='./LLAMA_Model/llama-7b')
parser.add_argument("--dataset_path", type=str,default='./Data_sample/UMLSE_Train_Tokenized')
parser.add_argument("--save_dir", type=str,default= './Fine_Tuning_Results/UMLSE_whole')
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--num_train_steps", type=int, default = 1500)
parser.add_argument("--save_interval", type=int, default = 500)
args = parser.parse_args()
print("Setup Data")
dataset = datasets.load_from_disk(args.dataset_path)
dataloader = RepeatingLoader(torch.utils.data.DataLoader(
DatasetDataset(dataset),
batch_size=args.batch_size,
shuffle=True
))
print("Setup Model")
num_layers = read_json(os.path.join(args.model_path, "config.json"))["num_hidden_layers"]
device_ids = list(range(torch.cuda.device_count()))
device_map = {
"model.embed_tokens": device_ids[0],
"model.norm.weight": device_ids[-1],
"lm_head": device_ids[-1],
}
allocations = [
device_ids[i] for i in
sorted(list(range(len(device_ids))) * math.ceil(num_layers / len(device_ids)))
]
for layer_i, device_id in enumerate(allocations):
device_map[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = device_id
device_map[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = device_id
device_map[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = device_id
device_map[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = device_id
device_map[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = device_id
device_map[f"model.layers.{layer_i}.mlp.down_proj.weight"] = device_id
device_map[f"model.layers.{layer_i}.mlp.up_proj.weight"] = device_id
device_map[f"model.layers.{layer_i}.input_layernorm.weight"] = device_id
device_map[f"model.layers.{layer_i}.post_attention_layernorm.weight"] = device_id
device_map[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = device_id
model = transformers.LlamaForCausalLM.from_pretrained(
args.model_path,
#load_in_8bit=True,
device_map=device_map,
)
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
print("Setup optimizer")
opt = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
# Train
print("Start training")
generator = iter(dataloader)
for step in tqdm.trange(args.num_train_steps):
input_ids, labels = next(generator)
# logits = model_forward(model, input_ids)
# loss = F.cross_entropy(
# logits.view(-1, model.config.vocab_size),
# labels.view(-1).to(logits.device),
# )
output = model(input_ids = input_ids, labels = labels)
loss = output['loss']
loss.backward()
opt.step()
if step % 1 == 0:
print(f"Loss={loss.item():.3f}")
actual_step = step + 1
if actual_step % args.gradient_accumulation_steps == 0:
opt.zero_grad()
if actual_step % args.save_interval and actual_step != args.num_train_steps:
model.save_pretrained(
os.path.join(args.save_dir), f"checkpoint-{actual_step}",
max_shard_size="500MB",
)
model.save_pretrained(
os.path.join(args.save_dir), f"checkpoint-final",
max_shard_size="500MB",
)
if __name__ == "__main__":
main()
# CUDA_VISIBLE_DEVICES='4,5,6,7' python finetune_pp.py