forked from real-stanford/diffusion_policy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base_lowdim_policy.py
36 lines (31 loc) · 1018 Bytes
/
base_lowdim_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from typing import Dict
import torch
import torch.nn as nn
from diffusion_policy.model.common.module_attr_mixin import ModuleAttrMixin
from diffusion_policy.model.common.normalizer import LinearNormalizer
class BaseLowdimPolicy(ModuleAttrMixin):
# ========= inference ============
# also as self.device and self.dtype for inference device transfer
def predict_action(self, obs_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
obs_dict:
obs: B,To,Do
return:
action: B,Ta,Da
To = 3
Ta = 4
T = 6
|o|o|o|
| | |a|a|a|a|
|o|o|
| |a|a|a|a|a|
| | | | |a|a|
"""
raise NotImplementedError()
# reset state for stateful policies
def reset(self):
pass
# ========== training ===========
# no standard training interface except setting normalizer
def set_normalizer(self, normalizer: LinearNormalizer):
raise NotImplementedError()