-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
256 lines (223 loc) · 9.5 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "wmrobot.h"
#include "collision_checker.h"
#include "parameter.h"
#include "mppi.h"
#include "log_mppi.h"
#include "smooth_mppi.h"
#include "mppi_ipddp.h"
#include <chrono>
int main(int argc, char* argv[]) {
std::string target;
int sim_maxiter;
if (argc > 2) {
target = argv[1];
sim_maxiter = std::stoi(argv[2]);
}
else {
std::cerr << "Error: No target specified.\n";
std::cerr << "Usage: " << argv[0] << " <target name>" << " <sim iteration>\n";
return 1;
}
// Model
auto model = WMRobot();
// PARAMETERS // PARAMETERS // PARAMETERS // PARAMETERS //
// MPPI
MPPIParam mppi_param;
// Log_MPPI
MPPIParam log_mppi_param;
// Smooth_MPPI
MPPIParam smooth_mppi_param1;
SmoothMPPIParam smooth_mppi_param2;
//MPPI_IPDDP
MPPIParam mi_mppi_param;
CorridorParam corridor_param;
// Corridor Parameter
corridor_param.max_iter = 3;
corridor_param.Nz = 1000;
corridor_param.gamma_z = 1000.0;
Eigen::VectorXd sigma_z(model.center_point + 1);
sigma_z << 0.3, 0.3, 0.1;
corridor_param.sigma_z = sigma_z.asDiagonal();
corridor_param.lambda_c = 35.0;
corridor_param.lambda_r = 35.0;
corridor_param.r_max = 0.5;
Param ipddp_param;
// IPDDP Parameter
ipddp_param.tolerance = 1e-7;
ipddp_param.max_iter = 100;
ipddp_param.mu = 0.01;
ipddp_param.infeasible = true;
ipddp_param.q = 0.001;
// PARAMETERS // PARAMETERS // PARAMETERS // PARAMETERS //
// Collision Checker
CollisionChecker collision_checker;
collision_checker.addRectangle(-2.5, 2.0, 3.0, 2.0);
collision_checker.addRectangle(1.0, 2.0, 3.0, 2.0);
collision_checker.addCircle(0.5, 1.0, 0.25);
clock_t start;
clock_t finish;
Eigen::VectorXd final_state(model.dim_x);
final_state << 0.0, 6.0, M_PI_2;
Eigen::MatrixXd res_X, res_U;
double max_sim_duration = 10.0;
bool is_failed;
// 100 200 400 800 1600 3200 6400 12800 25600
std::vector<int> N;
for (int n = 0; n < 9; ++n) {
N.push_back(100 * std::pow(2, n));
}
std::vector<double> SIGMA_U;
for (int n = 1; n < 10; ++n) {
SIGMA_U.push_back(0.1 * n);
}
std::cout<<"Target = "<<target<<std::endl;
std::cout<<"Simulate "<<sim_maxiter<<" times for each"<<std::endl;
std::cout << "N\tS_u\tP\tF\ta_msc_x\ta_msc_u\ta_tv_x\t\ta_tv_u\t\tavg_time\tmin_time\tmax_time" << std::endl;
for (int p1 = 0; p1 < N.size(); ++p1) {
for (int p2 = 0; p2 < SIGMA_U.size(); ++p2) {
// PARAMETERS // PARAMETERS // PARAMETERS // PARAMETERS //
if (target == "MPPI") {
mppi_param.Nu = N[p1];
mppi_param.gamma_u = 100.0;
mppi_param.sigma_u = SIGMA_U[p2] * Eigen::MatrixXd::Identity(model.dim_u, model.dim_u);
}
else if (target == "Log-MPPI") {
log_mppi_param.Nu = N[p1];
log_mppi_param.gamma_u = 100.0;
log_mppi_param.sigma_u = SIGMA_U[p2] * Eigen::MatrixXd::Identity(model.dim_u, model.dim_u);
}
else if (target == "Smooth-MPPI") {
smooth_mppi_param1.Nu = N[p1];
smooth_mppi_param1.gamma_u = 10.0;
smooth_mppi_param1.sigma_u = SIGMA_U[p2] * Eigen::MatrixXd::Identity(model.dim_u, model.dim_u);
smooth_mppi_param2.dt = 1.0;
smooth_mppi_param2.lambda = 15.0;
Eigen::VectorXd w(model.dim_u);
w << 0.8, 0.8;
smooth_mppi_param2.w = w.asDiagonal();
}
else if (target == "MPPI-IPDDP") {
mi_mppi_param.Nu = N[p1];
mi_mppi_param.gamma_u = 100.0;
mi_mppi_param.sigma_u = SIGMA_U[p2] * Eigen::MatrixXd::Identity(model.dim_u, model.dim_u);
}
// PARAMETERS // PARAMETERS // PARAMETERS // PARAMETERS //
int fail = 0;
double total_msc_x = 0.0;
double total_msc_u = 0.0;
double total_tv_x = 0.0;
double total_tv_u = 0.0;
double total_duration = 0.0;
double max_duration = 0.0;
double min_duration = max_sim_duration;
for (int t = 0; t < sim_maxiter; ++t) {
double msc_x = 0.0;
double msc_u = 0.0;
double tv_x = 0.0;
double tv_u = 0.0;
is_failed = false;
// MPPI
MPPI mppi(model);
// Log_MPPI
LogMPPI log_mppi(model);
// Smooth_MPPI
SmoothMPPI smooth_mppi(model);
// MPPI_IPDDP
MPPI_IPDDP mppi_ipddp(model);
if (target == "MPPI") {
mppi.init(mppi_param);
mppi.setCollisionChecker(&collision_checker);
}
else if (target == "Log-MPPI") {
log_mppi.init(log_mppi_param);
log_mppi.setCollisionChecker(&collision_checker);
}
else if (target == "Smooth-MPPI") {
smooth_mppi.init2(smooth_mppi_param1, smooth_mppi_param2);
smooth_mppi.setCollisionChecker(&collision_checker);
}
else if (target == "MPPI-IPDDP") {
mppi_ipddp.init(mi_mppi_param, corridor_param, ipddp_param);
mppi_ipddp.setCollisionChecker(&collision_checker);
}
double iter_duration = 0.0;
while (true) {
if (target == "MPPI") {
auto start = std::chrono::high_resolution_clock::now();
mppi.solve();
auto finish = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = finish - start;
iter_duration += elapsed.count();
res_X = mppi.getResX();
res_U = mppi.getResU();
}
else if (target == "Log-MPPI") {
auto start = std::chrono::high_resolution_clock::now();
log_mppi.solve();
auto finish = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = finish - start;
iter_duration += elapsed.count();
res_X = log_mppi.getResX();
res_U = log_mppi.getResU();
}
else if (target == "Smooth-MPPI") {
auto start = std::chrono::high_resolution_clock::now();
smooth_mppi.solve();
auto finish = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed = finish - start;
iter_duration += elapsed.count();
res_X = smooth_mppi.getResX();
res_U = smooth_mppi.getResU();
}
else if (target == "MPPI-IPDDP") {
mppi_ipddp.solve(1);
iter_duration += mppi_ipddp.mppi_duration+mppi_ipddp.corridor_duration+mppi_ipddp.ipddp_duration;
res_X = mppi_ipddp.X;
res_U = mppi_ipddp.U;
}
if (max_sim_duration < iter_duration) {
is_failed = true;
break;
}
if ((final_state - res_X.col(model.N)).norm() < 0.1) {
bool is_collision = false;
for (int j = 0; j < model.N; ++j) {
if (collision_checker.getCollisionGrid(res_X.col(j))) {
is_collision = true;
break;
}
}
if (!is_collision) {
break;
}
}
}
if (!is_failed) {
total_duration += iter_duration;
min_duration = std::min(min_duration, iter_duration);
max_duration = std::max(max_duration, iter_duration);
msc_x = meanSquaredCurvature(res_X);
msc_u = meanSquaredCurvature(res_U);
tv_x = totalVariation(res_X);
tv_u = totalVariation(res_U);
}
else {fail++;}
double fs_error = (final_state - res_X.col(model.N)).norm();
total_msc_x += msc_x;
total_msc_u += msc_u;
total_tv_x += tv_x;
total_tv_u += tv_u;
}
std::cout << std::fixed << std::setprecision(2);
// std::cout.fill(' ');
// std::cout.width(8);
int success = std::max(1, sim_maxiter - fail);
std::cout<<N[p1]<<'\t'<<SIGMA_U[p2]<<'\t'<<sim_maxiter - fail<<'\t'<<fail<<"\t";
std::cout << std::fixed << std::setprecision(6);
std::cout.fill('0');
std::cout.width(8);
std::cout<<(total_msc_x/success)<<'\t'<<(total_msc_u/success)<<'\t'<<(total_tv_x/success)<<'\t'<<(total_tv_u/success)<<'\t'<<total_duration/success<<'\t'<<min_duration<<'\t'<<max_duration<<std::endl;
}
}
return 0;
}