-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
262 lines (213 loc) · 9.48 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# coding: utf-8
import os
import random
import numpy as np
import torch
import torch.utils.data
import torch.nn.functional as F
from mel_processing import spectrogram_torch
from utils import load_wav_to_torch, load_filepaths_and_sid, load_binfn
"""Multi speaker version"""
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) text vector, loads audio, speaker_id
2) computes spectrograms from audio files.
"""
def __init__(self, filepaths_sid, hparams):
self.filepaths_sid = load_filepaths_and_sid(filepaths_sid)
self.sampling_rate = hparams.data.sampling_rate
self.filter_length = hparams.data.filter_length
self.hop_length = hparams.data.hop_length
self.win_length = hparams.data.win_length
self.text_channels = hparams.data.text_channels
self.segment_size = hparams.train.segment_size
self.min_text_len = getattr(hparams.data, "min_text_len", 2)
self.max_text_len = getattr(hparams.data, "max_text_len", 384)
self.min_wav_len = max(self.segment_size, getattr(hparams.data, "min_wav_len", 0))
self.max_wav_len = getattr(hparams.data, "max_wav_len", 10*self.sampling_rate)
self._filter()
random.seed(1234)
random.shuffle(self.filepaths_sid)
def _filter(self):
"""
Filter text & store spec lengths
"""
# Store spectrogram lengths for Bucketing
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
# spec_length = wav_length // hop_length
filepaths_sid_new = []
lengths = []
for vecfn, wavfn, emofn, sid in self.filepaths_sid:
vec = load_binfn(vecfn, self.text_channels)
wav, sr = load_wav_to_torch(wavfn)
if self.min_text_len < len(vec) < self.max_text_len and self.min_wav_len < len(wav) < self.max_wav_len:
filepaths_sid_new.append([vecfn, wavfn, emofn, sid])
lengths.append(len(wav) // self.hop_length)
self.filepaths_sid = filepaths_sid_new
self.lengths = lengths
def get_item(self, filepaths_sid):
# separate filename, speaker_id
vecfn, wavfn, emofn, sid = filepaths_sid
vec = self.get_text(vecfn)
spec, wav = self.get_audio(wavfn)
emo = self.get_emo(emofn)
sid = self.get_sid(sid)
return (vec, spec, wav, emo, sid)
def get_audio(self, filename):
audio_norm, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError("{} {} SR doesn't match target {} SR".format(sampling_rate, self.sampling_rate))
assert len(audio_norm) >= self.segment_size
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename[:-len(".wav")] + ".spec.pt"
try:
spec = torch.load(spec_filename)
except:
spec = spectrogram_torch(audio_norm, self.filter_length,
self.sampling_rate, self.hop_length, self.win_length,
center=False)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename)
return spec, audio_norm
def get_text(self, vecfn):
vec = load_binfn(vecfn, self.text_channels)
vec = torch.from_numpy(vec)
return vec
def get_emo(self, emofn):
emo = load_binfn(emofn, 1024).flatten() # (1024,)
emo = torch.from_numpy(emo)
return emo
def get_sid(self, sid):
sid = torch.LongTensor([int(sid)])
return sid
def __getitem__(self, index):
return self.get_item(self.filepaths_sid[index])
def __len__(self):
return len(self.filepaths_sid)
class TextAudioSpeakerCollate():
""" Zero-pads model inputs and targets
"""
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
"""Collate's training batch from normalized text, audio and speaker identities
PARAMS
------
batch: [text_normalized, spec_normalized, wav_normalized, emo, sid]
"""
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[1].size(1) for x in batch]),
dim=0, descending=True)
max_text_len = max([len(x[0]) for x in batch])
max_spec_len = max([x[1].size(1) for x in batch])
max_wav_len = max([x[2].size(1) for x in batch])
text_lengths = torch.LongTensor(len(batch))
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
text_padded = torch.FloatTensor(len(batch), max_text_len, batch[0][0].size(1))
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
emo = torch.FloatTensor(len(batch), 1024)
sid = torch.LongTensor(len(batch))
text_padded.zero_()
spec_padded.zero_()
wav_padded.zero_()
emo.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
text = row[0]
text_padded[i, :text.size(0), :] = text
text_lengths[i] = text.size(0)
spec = row[1]
spec_padded[i, :, :spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, :wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
emo[i, :] = row[3]
sid[i] = row[4]
if self.return_ids:
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, emo, sid, ids_sorted_decreasing
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, emo, sid
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, 0, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i+1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
# subsample
ids_bucket = ids_bucket[self.rank::self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
return self.num_samples // self.batch_size