-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
175 lines (150 loc) · 7.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the MIT License.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# MIT License for more details.
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import params
from model import GradTTS
from data import TextMelDataset, TextMelBatchCollate
from utils import plot_tensor, save_plot
from text.symbols import symbols
import os
train_filelist_path = params.train_filelist_path
valid_filelist_path = params.valid_filelist_path
cmudict_path = params.cmudict_path
add_blank = params.add_blank
log_dir = params.log_dir
n_epochs = params.n_epochs
batch_size = params.batch_size
out_size = params.out_size
learning_rate = params.learning_rate
random_seed = params.seed
nsymbols = len(symbols) + 1 if add_blank else len(symbols)
n_enc_channels = params.n_enc_channels
filter_channels = params.filter_channels
filter_channels_dp = params.filter_channels_dp
n_enc_layers = params.n_enc_layers
enc_kernel = params.enc_kernel
enc_dropout = params.enc_dropout
n_heads = params.n_heads
window_size = params.window_size
n_feats = params.n_feats
n_fft = params.n_fft
sample_rate = params.sample_rate
hop_length = params.hop_length
win_length = params.win_length
f_min = params.f_min
f_max = params.f_max
dec_dim = params.dec_dim
beta_min = params.beta_min
beta_max = params.beta_max
pe_scale = params.pe_scale
if __name__ == "__main__":
torch.manual_seed(random_seed)
np.random.seed(random_seed)
print('Initializing logger...')
logger = SummaryWriter(log_dir=log_dir)
print('Initializing data loaders...')
train_dataset = TextMelDataset(train_filelist_path, cmudict_path, add_blank,
n_fft, n_feats, sample_rate, hop_length,
win_length, f_min, f_max)
batch_collate = TextMelBatchCollate()
loader = DataLoader(dataset=train_dataset, batch_size=batch_size,
collate_fn=batch_collate, drop_last=True,
num_workers=4, shuffle=False)
test_dataset = TextMelDataset(valid_filelist_path, cmudict_path, add_blank,
n_fft, n_feats, sample_rate, hop_length,
win_length, f_min, f_max)
print('Initializing model...')
model = GradTTS(nsymbols, 1, None, n_enc_channels, filter_channels, filter_channels_dp,
n_heads, n_enc_layers, enc_kernel, enc_dropout, window_size,
n_feats, dec_dim, beta_min, beta_max, pe_scale).cuda()
print('Number of encoder + duration predictor parameters: %.2fm' % (model.encoder.nparams/1e6))
print('Number of decoder parameters: %.2fm' % (model.decoder.nparams/1e6))
print('Total parameters: %.2fm' % (model.nparams/1e6))
print('Initializing optimizer...')
optimizer = torch.optim.Adam(params=model.parameters(), lr=learning_rate)
print('Logging test batch...')
test_batch = test_dataset.sample_test_batch(size=params.test_size)
for i, item in enumerate(test_batch):
mel = item['y']
logger.add_image(f'image_{i}/ground_truth', plot_tensor(mel.squeeze()),
global_step=0, dataformats='HWC')
save_plot(mel.squeeze(), f'{log_dir}/original_{i}.png')
print('Start training...')
iteration = 0
for epoch in range(1, n_epochs + 1):
model.train()
dur_losses = []
prior_losses = []
diff_losses = []
with tqdm(loader, total=len(train_dataset)//batch_size) as progress_bar:
for batch_idx, batch in enumerate(progress_bar):
model.zero_grad()
x, x_lengths = batch['x'].cuda(), batch['x_lengths'].cuda()
y, y_lengths = batch['y'].cuda(), batch['y_lengths'].cuda()
dur_loss, prior_loss, diff_loss = model.compute_loss(x, x_lengths,
y, y_lengths,
out_size=out_size)
loss = sum([dur_loss, prior_loss, diff_loss])
loss.backward()
enc_grad_norm = torch.nn.utils.clip_grad_norm_(model.encoder.parameters(),
max_norm=1)
dec_grad_norm = torch.nn.utils.clip_grad_norm_(model.decoder.parameters(),
max_norm=1)
optimizer.step()
logger.add_scalar('training/duration_loss', dur_loss.item(),
global_step=iteration)
logger.add_scalar('training/prior_loss', prior_loss.item(),
global_step=iteration)
logger.add_scalar('training/diffusion_loss', diff_loss.item(),
global_step=iteration)
logger.add_scalar('training/encoder_grad_norm', enc_grad_norm,
global_step=iteration)
logger.add_scalar('training/decoder_grad_norm', dec_grad_norm,
global_step=iteration)
dur_losses.append(dur_loss.item())
prior_losses.append(prior_loss.item())
diff_losses.append(diff_loss.item())
if batch_idx % 5 == 0:
msg = f'Epoch: {epoch}, iteration: {iteration} | dur_loss: {dur_loss.item()}, prior_loss: {prior_loss.item()}, diff_loss: {diff_loss.item()}'
progress_bar.set_description(msg)
iteration += 1
log_msg = 'Epoch %d: duration loss = %.3f ' % (epoch, np.mean(dur_losses))
log_msg += '| prior loss = %.3f ' % np.mean(prior_losses)
log_msg += '| diffusion loss = %.3f\n' % np.mean(diff_losses)
with open(f'{log_dir}/train.log', 'a') as f:
f.write(log_msg)
if epoch % params.save_every > 0:
continue
model.eval()
print('Synthesis...')
with torch.no_grad():
for i, item in enumerate(test_batch):
x = item['x'].to(torch.long).unsqueeze(0).cuda()
x_lengths = torch.LongTensor([x.shape[-1]]).cuda()
y_enc, y_dec, attn = model(x, x_lengths, n_timesteps=50)
logger.add_image(f'image_{i}/generated_enc',
plot_tensor(y_enc.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
logger.add_image(f'image_{i}/generated_dec',
plot_tensor(y_dec.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
logger.add_image(f'image_{i}/alignment',
plot_tensor(attn.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
save_plot(y_enc.squeeze().cpu(),
f'{log_dir}/generated_enc_{i}.png')
save_plot(y_dec.squeeze().cpu(),
f'{log_dir}/generated_dec_{i}.png')
save_plot(attn.squeeze().cpu(),
f'{log_dir}/alignment_{i}.png')
ckpt = model.state_dict()
torch.save(ckpt, f=f"{log_dir}/grad_{epoch}.pt")