Skip to content

Latest commit

 

History

History
392 lines (299 loc) · 13.3 KB

README.md

File metadata and controls

392 lines (299 loc) · 13.3 KB

MERLIN 2 (MachinEd Ros pLanINg)

Table of Contents

Diagram

PDDL Planners

Installation

# clone these repos
$ cd ~/ros2_ws/src
$ git clone --recurse-submodules https://github.com/MERLIN2-ARCH/merlin2.git
$ cd merlin2

# SMTPlan+ dependencies
$ sudo apt install libz3-dev -y

# unified-planning
$ pip3 install --pre unified-planning[pyperplan,tamer]

# MongoDB
$ sudo ./scrips/install_mongo.sh
$ sudo ./scrips/install_mongocxx.sh

# sst
$ sudo apt-get install -y python3-dev libportaudio2 libportaudiocpp0 portaudio19-dev libasound-dev swig

# tts
$ sudo apt install espeak -y
$ sudo apt install speech-dispatcher -y
$ sudo apt install festival festival-doc festvox-kdlpc16k festvox-ellpc11k festvox-italp16k festvox-itapc16k -y
$ sudo apt install mpg321 -y

# pip3
$ pip3 install -r requirements.txt
$ python3 merlin2_arch/merlin2_reactive_layer/speech_to_text/nltk_download.py

# colcon
$ cd ~/ros2_ws
$ colcon build

Creating new actions

The creation of a new action is presented in this section. This way, navigation action is presented in PDDL, MERLIN2 and MERLIN2 state machine.

PDDL Example

This PDDL example shows a durative action that moves a robot from an origin (o) to a destination (d). It has two parameters o and d of type wp (waypoint), one condition, which is that the robot has to be at the origin, and two effects, which are that the robot is not at the origin but is at the destination.

(:durative-action navigation
  :parameters (?o ?d - wp)
  :duration (= ?duration 10)
  :condition (and
    (at start (robot_at ?o))
  )
  :effect (and
    (at start (not (robot_at ?o)))
    (at end (robot_at ?d))
  )
)

MERLIN2 Example

This example presents the same PDDL durative action as the previous PDDL version but using MERLIN2. There are 5 methods to override:

  • run_action: this callback is used to execute the code of the action.
  • cancel_action: this callback is used to cancel the action execution.
  • create_parameters: this method is used to return the list of parameters of the action (PddlObjectDto).
  • create_conditions: this method is used to return the list of conditions of the action (PddlConditionEffectDto).
  • create_effects: this method is used to return the list of effects of the action (PddlConditionEffectDto).
from typing import List
import rclpy

from kant_dto import (
    PddlObjectDto,
    PddlConditionEffectDto,
)

from merlin2_basic_actions.merlin2_basic_types import wp_type
from merlin2_basic_actions.merlin2_basic_predicates import robot_at

from merlin2_action.merlin2_action import Merlin2Action

from waypoint_navigation_msgs.action import NavigateToWp
from merlin2_msgs.msg import PlanAction


class Merlin2NavigationAction(Merlin2Action):

    def __init__(self):

        # create PDDL parameters as PddlObjectDto
        self.__org = PddlObjectDto(wp_type, "o")
        self.__dst = PddlObjectDto(wp_type, "d")

        # super init
        super().__init__("navigation")

        # ROS 2 interfaces
        self.__wp_nav_client = self.create_action_client(
            NavigateToWp, "/waypoint_navigation/navigate_to_wp")

    # override the run callback
    def run_action(self, goal: PlanAction) -> bool:
        nav_goal = NavigateToWp.Goal()

        dst = goal.objects[1]
        nav_goal.wp_id = dst

        self.__wp_nav_client.wait_for_server()
        self.__wp_nav_client.send_goal(nav_goal)
        self.__wp_nav_client.wait_for_result()

        if self.__wp_nav_client.is_succeeded():
            return True

        else:
            return False

    # override cancel callback
    def cancel_action(self):
        self.__wp_nav_client.cancel_goal()

    # add PDDL parameters
    def create_parameters(self) -> List[PddlObjectDto]:
        return [self.__org, self.__dst]

    # add PDDL action conditions as PddlConditionEffectDto
    def create_conditions(self) -> List[PddlConditionEffectDto]:
        condition_1 = PddlConditionEffectDto(
            robot_at,
            [self.__org],
            time=PddlConditionEffectDto.AT_START
        )
        return [condition_1]

    # add PDDL action effects as PddlConditionEffectDto
    def create_effects(self) -> List[PddlConditionEffectDto]:
        effect_1 = PddlConditionEffectDto(
            robot_at,
            [self.__dst],
            time=PddlConditionEffectDto.AT_END
        )

        effect_2 = PddlConditionEffectDto(
            robot_at,
            [self.__org],
            is_negative=True,
            time=PddlConditionEffectDto.AT_START
        )

        return [effect_1, effect_2]


def main():
    rclpy.init()
    node = Merlin2NavigationAction()
    node.join_spin()
    rclpy.shutdown()

if __name__ == "__main__":
    main()

MERLIN2 State Machine Example

This example presents the same PDDL durative action as the previous one but using state machines. In this version, the action is built using states. run_action and cancel_action methods are not necessary because the execution depends on the execution of the state machine. This means that run_action executes the state machine and cancel_action stops the state machines, stopping the current state, transparently for the user.

There are some basics states that can be accessed from Merlin2BasicStates, but new ones can be implemented using the state classes from YASMIN. The basic states are:

  • NAVIGATION
  • TTS
  • STT
from typing import List
import rclpy

from kant_dto import (
    PddlObjectDto,
    PddlConditionEffectDto,
)

from merlin2_basic_actions.merlin2_basic_types import wp_type
from merlin2_basic_actions.merlin2_basic_predicates import robot_at

from merlin2_fsm_action import (
    Merlin2FsmAction,
    Merlin2BasicStates
)
from yasmin import CbState
from yasmin.blackboard import Blackboard


class Merlin2NavigationFsmAction(Merlin2FsmAction):

    def __init__(self):

        # create PDDL parameters as PddlObjectDto
        self.__org = PddlObjectDto(wp_type, "o")
        self.__dst = PddlObjectDto(wp_type, "d")

        # super init
        super().__init__("navigation")

        # YASMIN CbState to create the navigation goal
        prepare_goal_state = CbState(["valid"], self.prepapre_goal)

        # YASMIN state for navigation
        navigation_state = self.create_state(Merlin2BasicStates.NAVIGATION)

        # create state machine adding states
        self.add_state(
            "PREPARING_GOAL",
            prepare_goal_state,
            {"valid": "NAVIGATING"}
        )

        self.add_state(
            "NAVIGATING",
            navigation_state
        )

    # callback for YASMIN CbState
    def prepapre_goal(self, blackboard: Blackboard) -> str:
        blackboard["destination"] = blackboard["merlin2_action_goal"].objects[1]
        return "valid"

    # add PDDL parameters
    def create_parameters(self) -> List[PddlObjectDto]:
        return [self.__org, self.__dst]

    # add PDDL action conditions as PddlConditionEffectDto
    def create_conditions(self) -> List[PddlConditionEffectDto]:
        condition_1 = PddlConditionEffectDto(
            robot_at,
            [self.__org],
            time=PddlConditionEffectDto.AT_START
        )
        return [condition_1]

    # add PDDL action effects as PddlConditionEffectDto
    def create_effects(self) -> List[PddlConditionEffectDto]:
        effect_1 = PddlConditionEffectDto(
            robot_at,
            [self.__dst],
            time=PddlConditionEffectDto.AT_END
        )

        effect_2 = PddlConditionEffectDto(
            robot_at,
            [self.__org],
            is_negative=True,
            time=PddlConditionEffectDto.AT_START
        )

        return [effect_1, effect_2]


def main():
    rclpy.init()
    node = Merlin2NavigationFsmAction()
    node.join_spin()
    rclpy.shutdown()


if __name__ == "__main__":
    main()

Demos

These demos are tested with ros2_rb1 simulation.

Demo 1

This a navigation, STT, TTS demo using the RB1 robot.

$ ros2 launch rb1_gazebo gazebo_nav2.launch.py
$ ros2 launch merlin2_demos merlin2_demo1.launch.py

Demo 2

The RB1 robot will start driving to specific points in the world. Half of the goals are canceled randomly. Distance and time are saved in a CSV file.

$ ros2 launch rb1_gazebo granny.launch.py
$ ros2 launch merlin2_demos merlin2_demo2.launch.py

Demo3

The RB1 robot waits until it hears the sound of the doorbell, navigates to the door, attends the person and returns to the living room.

$ ros2 launch rb1_gazebo granny.launch.py
$ ros2 launch merlin2_demos merlin2_demo3.launch.py

Citations

@Article{González-Santamarta2024,
author={Gonz{\'a}lez-Santamarta, Miguel {\'A}.
and Rodr{\'i}guez-Lera, Francisco J.
and Fern{\'a}ndez-Llamas, Camino
and Matellan-Olivera, Vicente},
title={A Hybrid Cognitive Architecture to Generate, Control, Plan, and Monitor Behaviors for Interactive Autonomous Robots},
journal={International Journal of Social Robotics},
year={2024},
month={Dec},
day={11},
abstract={Interactive robots not only need to react in predefined or deterministic scenarios but also learn and adapt in real-time, mirroring cognitive flexibility akin to human intelligence. Achieving this autonomy entails developing cognitive architectures that integrate reactive, deliberative and emergent capabilities. Thus, this paper presents MERLIN2, a hybrid cognitive architecture to generate, control, plan, and monitor behaviors in autonomous robots. This architecture combines reactive, deliberative, and emergent components, aiming to enhance adaptability in dynamic environments and make intelligent real-time decisions, thereby improving autonomy and performance. MERLIN2 comprises a deliberative system, based on a knowledge base and a symbolic planner; and a behavioral system composed of reactive components and several emergent components. It addresses core cognitive aspects like action selection, perception, memory, learning, reasoning, and explainability. MERLIN2 is evaluated in a simulated world and in the real world Carry My Luggage task from the RoboCup@Home. Therefore, the experimentation presented in this article showcases the architecture as a valid solution for autonomous robots.},
issn={1875-4805},
doi={10.1007/s12369-024-01192-4},
url={https://doi.org/10.1007/s12369-024-01192-4}
}
@article{GONZALEZSANTAMARTA2023100477,
    title = {MERLIN2: MachinEd Ros 2 pLanINg},
    journal = {Software Impacts},
    volume = {15},
    pages = {100477},
    year = {2023},
    issn = {2665-9638},
    doi = {https://doi.org/10.1016/j.simpa.2023.100477},
    url = {https://www.sciencedirect.com/science/article/pii/S2665963823000143},
    author = {Miguel Á. González-Santamarta and Francisco J. Rodríguez-Lera and Camino Fernández-Llamas and Vicente Matellán-Olivera},
    keywords = {Cognitive robotics, Hybrid architecture, Symbolic planning, Finite state-machines, Reactivity, Knowledge managing},
    abstract = {Any service robot should be able to make decisions and schedule tasks to reach predefined goals such as opening a door or assisting users at home. However, these processes are not single short-term tasks anymore and it is required to set long-term skills for establishing a control architecture that allows robots to perform daily tasks. This paper presents MERLIN2, a hybrid cognitive architecture based on symbolic planning and state machine decision-making systems, that allows performing robot behaviors. The architecture can run in any robot running ROS 2, the latest version of the Robot Operative System. MERLIN2 is available at https://github.com/MERLIN2-ARCH/merlin2.}
}
@article{gonzalez2020merlin,
  title={MERLIN a cognitive architecture for service robots},
  author={Gonz{\'a}lez-Santamarta, Miguel {\'A} and Rodr{\'\i}guez-Lera, Francisco J and {\'A}lvarez-Aparicio, Claudia and Guerrero-Higueras, {\'A}ngel M and Fern{\'a}ndez-Llamas, Camino},
  journal={Applied Sciences},
  volume={10},
  number={17},
  pages={5989},
  year={2020},
  publisher={MDPI}
}