You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
2024-11-13 11:10:19.750743: do_dummy_2d_data_aug: True
2024-11-13 11:10:19.751406: Creating new 5-fold cross-validation split...
2024-11-13 11:10:19.752586: Desired fold for training: 4
2024-11-13 11:10:19.752651: This split has 32 training and 8 validation cases.
using pin_memory on device 0
using pin_memory on device 0
2024-11-13 11:10:27.887467: Using torch.compile...
/home/xxx/miniconda3/envs/nnunet/lib/python3.12/site-packages/torch/optim/lr_scheduler.py:62: UserWarning: The verbose parameter is deprecated. Please use get_last_lr() to access the learning rate.
warnings.warn(
This is the configuration used by this training:
Configuration name: 3d_fullres
{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [6, 512, 512], 'median_image_size_in_voxels': [11.0, 1024.0, 1024.0], 'spacing': [8.0, 0.1953125, 0.1953125], 'normalization_schemes': ['NoNormalization', 'NoNormalization', 'NoNormalization', 'NoNormalization'], 'use_mask_for_norm': [False, False, False, False], 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'architecture': {'network_class_name': 'dynamic_network_architectures.architectures.unet.PlainConvUNet', 'arch_kwargs': {'n_stages': 8, 'features_per_stage': [32, 64, 128, 256, 320, 320, 320, 320], 'conv_op': 'torch.nn.modules.conv.Conv3d', 'kernel_sizes': [[1, 3, 3], [1, 3, 3], [1, 3, 3], [1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'strides': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2], [1, 2, 2]], 'n_conv_per_stage': [2, 2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2, 2], 'conv_bias': True, 'norm_op': 'torch.nn.modules.instancenorm.InstanceNorm3d', 'norm_op_kwargs': {'eps': 1e-05, 'affine': True}, 'dropout_op': None, 'dropout_op_kwargs': None, 'nonlin': 'torch.nn.LeakyReLU', 'nonlin_kwargs': {'inplace': True}, 'deep_supervision': True}, '_kw_requires_import': ['conv_op', 'norm_op', 'dropout_op', 'nonlin']}, 'batch_dice': False}
These are the global plan.json settings:
{'dataset_name': 'Dataset125_StandardScar', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [8.0, 0.1953125, 0.1953125], 'original_median_shape_after_transp': [11, 1024, 1024], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1348.0, 'mean': 138.0654296875, 'median': 128.0, 'min': -392.0, 'percentile_00_5': -142.0, 'percentile_99_5': 583.0, 'std': 117.80979919433594}, '1': {'max': 870.0, 'mean': 108.35521697998047, 'median': 102.0, 'min': -202.0, 'percentile_00_5': -73.0, 'percentile_99_5': 397.0, 'std': 75.5691909790039}, '2': {'max': 209.0, 'mean': 57.79533767700195, 'median': 59.0, 'min': -140.0, 'percentile_00_5': -26.0, 'percentile_99_5': 124.0, 'std': 23.255491256713867}, '3': {'max': 437.0, 'mean': 75.72803497314453, 'median': 74.0, 'min': -118.0, 'percentile_00_5': -29.0, 'percentile_99_5': 220.0, 'std': 35.11865234375}}}
2024-11-13 11:10:28.660186: unpacking dataset...
2024-11-13 11:10:38.950119: unpacking done...
2024-11-13 11:10:38.953328: Unable to plot network architecture: nnUNet_compile is enabled!
2024-11-13 11:10:39.002148:
2024-11-13 11:10:39.002385: Epoch 0
2024-11-13 11:10:39.002838: Current learning rate: 0.01
corrupted size vs. prev_size
corrupted size vs. prev_size
Exception in thread Thread-1 (results_loop):
Traceback (most recent call last):
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/threading.py", line 1052, in _bootstrap_inner
self.run()
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/threading.py", line 989, in run
self._target(*self._args, **self._kwargs)
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 125, in results_loop
raise e
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 103, in results_loop
raise RuntimeError("One or more background workers are no longer alive. Exiting. Please check the "
RuntimeError: One or more background workers are no longer alive. Exiting. Please check the print statements above for the actual error message
Traceback (most recent call last):
File "/home/XXX/miniconda3/envs/nnunet/bin/nnUNetv2_train", line 8, in<module>sys.exit(run_training_entry())
^^^^^^^^^^^^^^^^^^^^
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/nnunetv2/run/run_training.py", line 275, in run_training_entry
run_training(args.dataset_name_or_id, args.configuration, args.fold, args.tr, args.p, args.pretrained_weights,
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/nnunetv2/run/run_training.py", line 211, in run_training
nnunet_trainer.run_training()
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/nnunetv2/training/nnUNetTrainer/nnUNetTrainer.py", line 1370, in run_training
train_outputs.append(self.train_step(next(self.dataloader_train)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 196, in __next__
item = self.__get_next_item()
^^^^^^^^^^^^^^^^^^^^^^
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 181, in __get_next_item
raise RuntimeError("One or more background workers are no longer alive. Exiting. Please check the "
RuntimeError: One or more background workers are no longer alive. Exiting. Please check the print statements above for the actual error message
Exception in thread Thread-2 (results_loop):
Traceback (most recent call last):
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/threading.py", line 1052, in _bootstrap_inner
self.run()
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/threading.py", line 989, in run
self._target(*self._args, **self._kwargs)
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 125, in results_loop
raise e
File "/home/XXX/miniconda3/envs/nnunet/lib/python3.12/site-packages/batchgenerators/dataloading/nondet_multi_threaded_augmenter.py", line 103, in results_loop
raise RuntimeError("One or more background workers are no longer alive. Exiting. Please check the "
RuntimeError: One or more background workers are no longer alive. Exiting. Please check the print statements above for the actual error message
I don't know why it keeps prompting “RuntimeError: One or more background workers are no longer alive. Exiting. Please check the print statements above for the actual error message”, I've tried looking up the prompts in the logs and it seems to be the only one:
corrupted size vs. prev_size
corrupted size vs. prev_size
Possibly related, but I can't find a solution for this from the internet.
As a matter of fact, I've already executed this order:
Going to “experiment planning and preprocessing”, this is part of the log of the execution of the “experiment planning and preprocessing” command, I don't know if it's related to the problems encountered during this execution of the training.
$ nnUNetv2_plan_and_preprocess -d 124 --verify_dataset_integrity
Fingerprint extraction...
Dataset124_resampledScar
Using <class 'nnunetv2.imageio.simpleitk_reader_writer.SimpleITKIO'> as reader/writer
WARNING! Not all input images have the same origin!
Origins:
[(-4.470895767211914, -303.8560791015625, -432.8706359863281), (-6.175111770629883, -303.84234619140625, -432.80615234375), (-4.4064788818359375, -303.6878967285156, -432.8159484863281), (-4.558997631072998, -303.8019104003906, -432.84918212890625)]
Image files:
['/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_11_0000.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_11_0001.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_11_0002.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_11_0003.nii.gz']
It is up to you to decide whether that's a problem. You should run nnUNetv2_plot_overlay_pngs to verify that segmentations and data overlap.
WARNING! Not all input images have the same direction!
Directions:
[(0.7249377510466453, -0.033225640262165304, -0.6880125829552542, 0.6597619691757571, 0.32051894188074836, 0.6796923707965171, 0.1979378719112628, -0.9466592125600505, 0.25427734223923526), (0.7347161775984044, -0.03322565455148758, -0.6775604557270991, 0.649960700722706, 0.3205189417284067, 0.6890708876138939, 0.19427615883385993, -0.9466592121101064, 0.2570858624621083), (0.7235732790899242, -0.033225640262165304, -0.6894474592383942, 0.6611072319789659, 0.32051894188074836, 0.6783839431516916, 0.1984412699318479, -0.9466592125600505, 0.25388467189589264), (0.7251306920448843, -0.033225640262165304, -0.6878092259202788, 0.6595713047911503, 0.32051894188074836, 0.6798773974557673, 0.19786655440120882, -0.9466592125600505, 0.25433283934191325)]
Image files:
['/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_11_0000.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_11_0001.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_11_0002.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_11_0003.nii.gz']
It is up to you to decide whether that's a problem. You should run nnUNetv2_plot_overlay_pngs to verify that segmentations and data overlap.
WARNING! Not all input images have the same origin!
Origins:
[(39.85212326049805, -303.416748046875, -467.0427551269531), (39.64960861206055, -303.2052917480469, -466.9926452636719), (39.68174743652344, -303.1330871582031, -466.23077392578125), (39.66739273071289, -303.0367431640625, -465.6351318359375)]
Image files:
['/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_19_0000.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_19_0001.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_19_0002.nii.gz', '/home/XXX/Code/Python/nnUNet_raw_data/Dataset124_resampledScar/imagesTr/patient_19_0003.nii.gz']
It is up to you to decide whether that's a problem. You should run nnUNetv2_plot_overlay_pngs to verify that segmentations and data overlap.
WARNING! Not all input images have the same direction!
I hope that the contents of these logs of mine will help you to better optimize your programs and that you will be able to solve my problems.
The text was updated successfully, but these errors were encountered:
When I am running this command, I get an error.
The full log is:
I don't know why it keeps prompting “RuntimeError: One or more background workers are no longer alive. Exiting. Please check the print statements above for the actual error message”, I've tried looking up the prompts in the logs and it seems to be the only one:
Possibly related, but I can't find a solution for this from the internet.
As a matter of fact, I've already executed this order:
Going to “experiment planning and preprocessing”, this is part of the log of the execution of the “experiment planning and preprocessing” command, I don't know if it's related to the problems encountered during this execution of the training.
I hope that the contents of these logs of mine will help you to better optimize your programs and that you will be able to solve my problems.
The text was updated successfully, but these errors were encountered: