-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathprepare_image_database.m
152 lines (124 loc) · 5.47 KB
/
prepare_image_database.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
%Simulate Metal Artifact for CT
%
% *Make sure to have (1) Deep Lesion dataset under <image_folder>
% (2) image_list.txt
%
% For each mode train/val, this file will generate
% (1) mask.h5: all metal masks
% (2) metal_trace.h5: all metal traces
%
% For each mode train/val and each CT image, this file will generate
% an h5 file. Each h5 file includes the following attributes:
% -gt_CT (W,H,1):
% Monochromatic CT from Deep Lesion
% -poly_CT (W,H,1):
% Polychromatic CT w/o artifact. This is the target CT during training.
% -ma_CT (W,H,K):
% CT images with metal artifact. K is the number of all metal masks.
% -LI_CT (W,H,K):
% CT reconstructed from LI sinogram
% -poly_sinogram (W',H',1):
% Polychromatic sinogram w/o artifact. This is the target sinogram during training.
% -ma_sinogram (W',H',K):
% Sinograms corrupted by metal artifact. K is the number of all metal traces.
% -LI_sinogram (W',H',K):
% Linear interpolated sinogram.
clear; clc
%--------------------------------------------------------------------------
% Select train/val
mode = 'train';
% Specify your own output folder
database_root = sprintf('database_MAR/images_%s', mode);
% Specify the location of Deep Lesion CT images
image_folder = 'images';
%--------------------------------------------------------------------------
data_list = importdata('dataset/image_list.txt');
load('dataset/CT_Samples.mat', 'CT_samples_bwMetal');
% parallel computing
poolobj = gcp('nocreate');
if isempty(poolobj)
parpool(12)
end
% If we want Python hdf5 matrix to have size (N x H x W),
% Matlab matrix should have size (W x H x N)
% Therefore, we can permute (H, W, N) to (W x H x N)
% polychromatic paramters
MARpara = getMARpara();
CTpara = getCTpara();
fprintf('Finish setting MARpara and CTpara...\n')
% image and mask indices
if strcmp(mode, 'train')
image_indices = CTpara.train_indices;
mask_indices = CTpara.train_mask_indices;
else
image_indices = CTpara.val_indices;
mask_indices = CTpara.val_mask_indices;
end
image_size = [CTpara.imPixNum, CTpara.imPixNum, numel(mask_indices)];
sinogram_size = [CTpara.sinogram_size_x, CTpara.sinogram_size_y, numel(mask_indices)];
% metal and metal trace
selected_metal = CT_samples_bwMetal(:, :, mask_indices);
mask_all = single(zeros(image_size));
metal_trace_all = single(zeros(sinogram_size));
metal_proj_all = single(zeros(sinogram_size));
mask_name = sprintf('%s/mask.h5', database_root);
if ~exist(mask_name, 'file')
h5create(mask_name, '/mask', image_size, 'DataType', 'single');
fprintf('Create %s...\n', mask_name)
end
metal_trace_name = sprintf('%s/metal_trace.h5', database_root);
if ~exist(metal_trace_name, 'file')
h5create(metal_trace_name, '/metal_trace', sinogram_size, 'DataType', 'single');
fprintf('Create %s...\n', metal_trace_name)
end
for i = 1:numel(mask_indices)
mask_resize = imresize(selected_metal(:, :, i), [CTpara.imPixNum, CTpara.imPixNum], 'Method', 'bilinear');
mask_proj = fanbeam(mask_resize, CTpara.SOD,...
'FanSensorGeometry', 'arc',...
'FanSensorSpacing', CTpara.angSize, ...
'FanRotationIncrement', 360/CTpara.angNum);
metal_trace = single(mask_proj > 0);
mask_all(:, :, i) = mask_resize';
metal_trace_all(:, :, i) = metal_trace';
% metal trace partial volume effect
Pmetal_kev = mask_proj * CTpara.imPixScale;
Pmetal_kev = MARpara.metalAtten * Pmetal_kev;
% partial volume effect
Pmetal_kev_bw =imerode(Pmetal_kev>0, [1 1 1]');
Pmetal_edge = xor((Pmetal_kev>0), Pmetal_kev_bw);
Pmetal_kev(Pmetal_edge) = Pmetal_kev(Pmetal_edge) / 4;
metal_proj_all(:,:,i) = Pmetal_kev';
i
end
h5write(mask_name, '/mask', mask_all);
h5write(metal_trace_name, '/metal_trace', metal_trace_all);
%% metal trace partial volume effect
%% generate data
% for i = 1:numel(image_indices)
for i = 1 % for demo
fprintf('Processing %s', data_list{image_indices(i)})
raw_image = imread([image_folder '/' data_list{image_indices(i)}]);
% Deep Lesion offsets. Make sure 'image' has valid HU values after this
% step
image = single(raw_image) - 32768;
image = imresize(image, [CTpara.imPixNum, CTpara.imPixNum], 'Method', 'bilinear');
image(image < -1000) = -1000;
% The input CT image to synArtifactMulti must have valid HU values (do not rescale to [0,1] or [0,255], etc)
[ma_sinogram_all, LI_sinogram_all, gt_sinogram_water_all, ma_CT_all, LI_CT_all, gt_CT] = synArtifactMulti(image, CTpara, MARpara, mask_all, metal_trace_all, metal_proj_all);
data_name = sprintf('%s/%04d.h5', database_root, i);
if ~exist(data_name, 'file')
h5create(data_name, '/ma_sinogram', sinogram_size, 'DataType', 'single');
h5create(data_name, '/LI_sinogram', sinogram_size, 'DataType', 'single');
h5create(data_name, '/gt_sinogram_water', sinogram_size, 'DataType', 'single');
h5create(data_name, '/ma_CT', image_size, 'DataType', 'single');
h5create(data_name, '/LI_CT', image_size, 'DataType', 'single');
h5create(data_name, '/gt_CT', [CTpara.imPixNum, CTpara.imPixNum], 'DataType', 'single');
end
h5write(data_name, '/ma_sinogram', ma_sinogram_all);
h5write(data_name, '/LI_sinogram', LI_sinogram_all);
h5write(data_name, '/gt_sinogram_water', gt_sinogram_water_all);
h5write(data_name, '/ma_CT', ma_CT_all);
h5write(data_name, '/LI_CT', LI_CT_all);
h5write(data_name, '/gt_CT', gt_CT);
i
end