-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclimabox.py
446 lines (374 loc) · 16.2 KB
/
climabox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import pandas as pd
import numpy as np
import math
#EnergyPlus Weatherfile Parameters, columns/fields in order
### [0, 5] year, month, day, hour, minute, data source and uncertaintity flags,
### [6, 9] tdb, tdp, rh, patm,
### [10. 12] extraterrestrial horizontal radiation, extrat direct normal radiation, extrast infrared radiaton,
### [14, 16] golabl horizontal radiation, direct normal radiation, diffuse horizontal radiation
#############
# Schedules to be used for ventilation evaluation. OFFICE BUILDINGS.
sch_occOff_8to5 = []
for i in range(1,8): sch_occOff_8to5.append((i,0))
for i in range(8,19): sch_occOff_8to5.append((i,1))
for i in range(19,25): sch_occOff_8to5.append((i,0))
### Occupancy Schedule
sch_occOff = []
for i in range(1,7): sch_occOff.append((i,0))
sch_occOff.append((7,0.1))
sch_occOff.append((8,0.2))
for i in range(9,13): sch_occOff.append((i,0.95))
sch_occOff.append((13,0.5))
for i in range(14,18): sch_occOff.append((i,0.95))
sch_occOff.append((18,0.3))
sch_occOff.append((19,0.1))
sch_occOff.append((20,0.1))
for i in range(21,25): sch_occOff.append((i,0.05))
sch_occOff_Sat = []
for i in range(1,8): sch_occOff_Sat.append((i,0))
sch_occOff_Sat.append((8,0.1))
for i in range(9,13): sch_occOff_Sat.append((i,0.3))
for i in range(13,18): sch_occOff_Sat.append((i,0.1))
for i in range(18,25): sch_occOff_Sat.append((i,0.0))
#No occupancy, off schedule
sch_Off_Sun = []
for i in range(1,25): sch_Off_Sun.append((i,0))
### Light schedule
sch_lgtOff = []
for i in range(1,7): sch_lgtOff.append((i,0.05))
sch_lgtOff.append((7,0.1))
sch_lgtOff.append((8,0.3))
for i in range(9,17): sch_lgtOff.append((i,0.90))
sch_lgtOff.append((17,0.5))
sch_lgtOff.append((18,0.5))
for i in range(19,21): sch_lgtOff.append((i,0.30))
for i in range(21,23): sch_lgtOff.append((i,0.20))
sch_lgtOff.append((23,0.1))
sch_lgtOff.append((24,0.05))
sch_lgtOff_Sat = []
for i in range(1,7): sch_lgtOff_Sat.append((i,0.05))
for i in range(7,9): sch_lgtOff_Sat.append((i,0.1))
for i in range(9,13): sch_lgtOff_Sat.append((i,0.3))
for i in range(13,18): sch_lgtOff_Sat.append((i,0.15))
for i in range(18,25): sch_lgtOff_Sat.append((i,0.05))
sch_lgtOff_Sun = []
for i in range(1,25): sch_lgtOff_Sun.append((i,0.05))
#Equipment schedule
sch_eqpOff = []
for i in range(1,8): sch_eqpOff.append((i,0))
sch_eqpOff.append((8,0.4))
for i in range(9,13): sch_eqpOff.append((i,0.90))
sch_eqpOff.append((13,0.8))
for i in range(14,18): sch_eqpOff.append((i,0.90))
sch_eqpOff.append((18,0.5))
for i in range(19,25): sch_eqpOff.append((i,0.4))
sch_eqpOff_Sat = []
for i in range(1,7): sch_eqpOff_Sat.append((i,0.3))
for i in range(7,8): sch_eqpOff_Sat.append((i,0.4))
for i in range(8,13): sch_eqpOff_Sat.append((i,0.5))
for i in range(13,18): sch_eqpOff_Sat.append((i,0.35))
for i in range(18,25): sch_eqpOff_Sat.append((i,0.30))
sch_eqpOff_Sun = []
for i in range(1,25): sch_eqpOff_Sun.append((i,0.3))
######
sch_L_E = []
for i in range(1,8): sch_L_E.append((i,0.1))
for i in range(8,12): sch_L_E.append((i,0.2))
for i in range(12,19): sch_L_E.append((i,0.5))
for i in range(19,25): sch_L_E.append((i,0.1))
sch_nightV = []
for i in range(1,6): sch_nightV.append((i,1))
for i in range(6,22): sch_nightV.append((i,0))
for i in range(22,25): sch_nightV.append((i,1))
sch_preCool = []
for i in range(1,6): sch_preCool.append((i,0))
for i in range(6,9): sch_preCool.append((i,1))
for i in range(9,18): sch_preCool.append((i,0))
for i in range(18,22): sch_preCool.append((i,1))
for i in range(22,25): sch_preCool.append((i,0))
def totResistanceShoebox(A_facade, WWR, U_wall, U_glazing, V_dot, A_TM, h_convection):
Res_1=1/((A_facade*U_wall*(1-WWR))+(A_facade*WWR*U_glazing)+ (V_dot*1.2*1000))
Res_2 = 1/(A_TM*h_convection)
Res_tot = Res_1 + Res_2
return Res_tot
def totResistance(zone_input):
W, L, H= zone_input['W'],zone_input['L'],zone_input['H']
WWRs, WWRw, WWRn, WWRe, U_wall, U_roof, U_glazing, V_dot, A_TM_factor, h_convection=zone_input['WWRs'],zone_input['WWRw'],zone_input['WWRn'],zone_input['WWRe'],zone_input['U_wall'],zone_input['U_roof'],zone_input['U_glazing'],zone_input['V_dot'],zone_input['A_TM_factor'],zone_input['h_convection']
_s = (L*H*U_wall*(1-WWRs))+(L*H*WWRs*U_glazing)
_w = (W*H*U_wall*(1-WWRw))+(W*H*WWRw*U_glazing)
_n = (L*H*U_wall*(1-WWRn))+(L*H*WWRn*U_glazing)
_e = (W*H*U_wall*(1-WWRw))+(W*H*WWRw*U_glazing)
_r = (W*L*U_roof)
Res_1=1/(_s +_w +_n +_e + _r + (V_dot*1.2*1000))
Res_2 = 1/(A_TM_factor*L*W*h_convection)
Res_tot = Res_1 + Res_2
return Res_tot
def intGain(W, L, H, WWRs, WWRw, WWRn, WWRe, SHGC,qradHS,qradHW,qradHN,qradHE,shadingFac):
_allGlazing = (L*H*WWRs*qradHS)+(W*H*WWRw*qradHW)+(L*H*WWRn*qradHN)+(W*H*WWRw*qradHE)
# print ('********solar gain calc ',L*H*WWRs*qradHS, qradHS )
solarGain = _allGlazing*SHGC*shadingFac
return solarGain
def timeConstant(Res_tot, zone_input):
W, L, A_TM_factor, tickness_TM, cp_TM, density_TM = zone_input['W'],zone_input['L'], zone_input['A_TM_factor'],zone_input['T_TM'],zone_input['cp_TM'],zone_input['density_TM']
thermalCapacitance = A_TM_factor*W*L*tickness_TM*cp_TM*density_TM
t_tau = Res_tot * thermalCapacitance #result in seconds. Return result in hr.
return (t_tau/3600)
def Tin_new (Res_tot, internalLoad, Tout, Tin, timeConstant):
a = Res_tot*internalLoad + (Tout+273)
b = 1 - math.exp(-1/timeConstant)
c = (Tin+273) * math.exp(-1/timeConstant)
Tin_ = a*b + c
return (Tin_-273)
def Qsys (Res_tot, internalLoad, Tout, TinPrevious, Ttarget_L, Ttarget_U, timeConstant):
# if heating is needed
qsys_h = 0
if TinPrevious<=Ttarget_L:
a = (Ttarget_L+273) - (TinPrevious+273)* math.exp(-1/timeConstant)
b = 1 - math.exp(-1/timeConstant)
c = a/b - (Tout+273)
if c/Res_tot > internalLoad:
qsys_h = (c/Res_tot) - internalLoad
# if cooling is needed
if TinPrevious >= Ttarget_U:
a = (Ttarget_U+273) - (TinPrevious+273)* math.exp(-1/timeConstant)
b = 1 - math.exp(-1/timeConstant)
c = a/b - (Tout+273)
qsys_c = (c/Res_tot) - internalLoad # cooling energy is negative.
else: qsys_c = 0
return [qsys_h, qsys_c]
def Qcool (Res_tot, internalLoad, Tout, TinPrevious, Ttarget_U, timeConstant): #for hourly calculation
qsys_c = 0
if TinPrevious >= Ttarget_U:
a = (Ttarget_U+273) - (TinPrevious+273)* math.exp(-1/timeConstant)
b = 1 - math.exp(-1/timeConstant)
c = a/b - (Tout+273)
# if c/Res_tot<0:
qsys_c = (c/Res_tot) - internalLoad # cooling energy is negative.
# else: qsys_c = -1 * internalLoad
return qsys_c
def Qheat (Res_tot, internalLoad, Tout, TinPrevious, Ttarget_L, timeConstant): #for hourly calculation
# if heating is needed
qsys_h = 0
if TinPrevious<=Ttarget_L:
a = (Ttarget_L+273) - (TinPrevious+273)* math.exp(-1/timeConstant)
b = 1 - math.exp(-1/timeConstant)
c = a/b - (Tout+273)
if c/Res_tot > internalLoad:
qsys_h = (c/Res_tot) - internalLoad
return qsys_h
def nv_Operable (zone_input, Tin, Tout, wind_angle, wind_speed, Fschedule,operableAreaFraction): #for hourly calculation
L,W,H,WWRs,WWRw,WWRn,WWRe = zone_input["L"], zone_input["W"],zone_input["H"],zone_input["WWRs"],zone_input["WWRw"],zone_input["WWRn"],zone_input["WWRe"]
Cwn,Cwe,Cws,Cww=0,0,0,0
#Based on energyplus, ventilation by wind and stack with open area
#Wind ventilation
if wind_angle == 0: Cwn,Cwe,Cws,Cww=0.55,0,0,0
elif wind_angle == 90: Cwn,Cwe,Cws,Cww=0,0.55,0,0
elif wind_angle == 180: Cwn,Cwe,Cws,Cww=0,0,0.55,0
elif wind_angle == 270: Cwn,Cwe,Cws,Cww=0,0,0,0.55
elif 0<wind_angle<90 : Cwn,Cwe,Cws,Cww=0.3,0.3,0,0
elif 90<wind_angle<180 : Cwn,Cwe,Cws,Cww=0,0.3,0.3,0
elif 180<wind_angle<270 : Cwn,Cwe,Cws,Cww=0,0,0.3,0.3
elif 270<wind_angle<360 : Cwn,Cwe,Cws,Cww=0.3,0,0,0.3
eff_operableWin_wind = ((L*H*WWRs*Cws)+(W*H*WWRw*Cww)+(L*H*WWRn*Cwn)+(W*H*WWRe*Cwe))*operableAreaFraction
Qw= eff_operableWin_wind*Fschedule*wind_speed
# if Qw>0: print ("no opening scenarios ",WWRn,WWRe,WWRs,WWRw,Cwn,Cwe,Cws,Cww)
#buoyancy ventilation
Cd = 0.4 + 0.0045*np.absolute(Tin-Tout)
Hnpl= H/4 #to be checked based on ASHRAE guidance
g = 9.8
eff_operableWin_buoy = ((L*H*WWRs)+(W*H*WWRw)+(L*H*WWRn)+(W*H*WWRe))*operableAreaFraction
Qs = Cd*eff_operableWin_buoy*Fschedule*np.sqrt(2*g*Hnpl*np.absolute(Tin-Tout)/(Tout+273))
Q=np.sqrt(np.square(Qw)+np.square(Qs))
return (round(Q,0))
## to store discomfort hours from low temperature and high temperatures.
def comfortEval(tempin_, lowerBound, upperBound,occupancy):
discomfort_coldhrs, discomfort_hothrs = 0,0
hr_len = len(tempin_)
hours = list(range(0,hr_len))
for i in range (0,hr_len):
if tempin_[i] > upperBound+0.9 and occupancy[i]>0.25: #"+0.9" to match the frequency chart, where all indoor temp between 26 and 26.9 are binned together.
discomfort_hothrs+=1
if tempin_[i] < lowerBound and occupancy[i]>0.25:
discomfort_coldhrs+=1
#print (wth+' discomfort hours ', discomforthrs)
return ((discomfort_coldhrs, discomfort_hothrs))
def runRC(toutL,windDL,windVL,qradHS,qradHW,qradHN,qradHE,zone_input,LPD,EPD):
t_inL, t_inL_q, t_inL_q_, qsystemL_h, qsystemL_c, qsystem_h, qsystem_c, occ, nightV, l_e, solarGL, internalGT, heatLT, ach, nvonL, nvind = [],[],[],[],[],0,0,[],[],[],[],[],[],[],[],-100
eqpSch, lgtSch = [],[]
occDensityOff = 0.055 #18 m2 per person,
loadPerPerson = 100 #w/person
PPD = occDensityOff*loadPerPerson
Afloor = zone_input['W']*zone_input['L']
depth_daylit = 2.5
dA_perimeter = ((zone_input['WWRw']+zone_input['WWRe'])*zone_input['W'] + (zone_input['WWRs']+zone_input['WWRn'])*zone_input['L'])
dA_penetration = (zone_input['H']/2 + zone_input['H']*depth_daylit/2)
dA_area= dA_penetration*dA_perimeter
dA_floorPercentage = dA_area/Afloor
LPD_floorPercentage = 1-dA_floorPercentage
t_in0 = 20 #toutL[0] + 5
t_in0q = t_in0
q_light, q_eqpt = 0,0
t_lowerSetBack, t_upperSetBack = 16,28
operableAreaFraction,Fschedule,qL,Qinfilloss = 0.5,1,[],[]
days = int(len(toutL)/24)
occ_=[s[1] for s in sch_occOff]
occ_Sat=[s[1] for s in sch_occOff_Sat]
occ_Sun=[s[1] for s in sch_Off_Sun]
# for d in range(1,days+1):
# for i in range(1,6):
# if d%i == 0:occ.extend(occ_)
# if d%6 == 0:
# occ.extend(occ_Sat)
# occ_Sat_+=1
# print (d, d%6)
# if d%7 == 0:occ.extend(occ_Sun)
occ_week = []
for d in range (0,5):occ_week.extend(occ_)
occ_week.extend(occ_Sat)
occ_week.extend(occ_Sun)
for w in range(0,52): occ.extend(occ_week)
occ.extend(occ_)
eqp_=[s[1] for s in sch_eqpOff]
eqp_Sat=[s[1] for s in sch_eqpOff_Sat]
eqp_Sun=[s[1] for s in sch_eqpOff_Sun]
eqp_week = []
for d in range (0,5):eqp_week.extend(eqp_)
eqp_week.extend(eqp_Sat)
eqp_week.extend(eqp_Sun)
for w in range(0,52): eqpSch.extend(eqp_week)
eqpSch.extend(eqp_)
# for d in range(1,days+1):
# for i in range(1,6):
# if d%i == 0:eqpSch.extend(eqp_)
# if d%6 == 0:eqpSch.extend(eqp_Sat)
# if d%7 == 0:eqpSch.extend(eqp_Sun)
lgt_=[s[1] for s in sch_lgtOff]
lgt_Sat=[s[1] for s in sch_lgtOff_Sat]
lgt_Sun=[s[1] for s in sch_lgtOff_Sun]
lgtSch_week = []
for d in range (0,5):lgtSch_week.extend(lgt_)
lgtSch_week.extend(lgt_Sat)
lgtSch_week.extend(lgt_Sun)
for w in range(0,52): lgtSch.extend(lgtSch_week)
lgtSch.extend(lgt_)
# for d in range(1,days+1):
# for i in range(1,6):
# if d%i == 0:lgtSch.extend(lgt_)
# if d%6 == 0:lgtSch.extend(lgt_Sat)
# if d%7 == 0:lgtSch.extend(lgt_Sun)
# print (len(eqp_week))
# print (len(lgtSch), len(occ), len(eqpSch))
l_e_=[s[1] for s in sch_L_E]
for i in range(0,days):l_e.extend(l_e_)
nightV_=[s[1] for s in sch_nightV]
for i in range(0,days):nightV.extend(nightV_)
occPlot = [x*-20 for x in occ]
V_dot0 = zone_input['V_dot']
maxVdot = 40*zone_input['W']*zone_input['L']*zone_input['H']/3600 #control for mazimum ventilation rate.
hr = 0
while hr < len(toutL):
#IF NV is turned on:
NV_V_dot = 0
if zone_input['NVach']>1 and (t_in0q > 20) and (t_in0q > toutL[hr]) and zone_input['sp_lower'] < toutL[hr] < zone_input['sp_upper']:
# if zone_input['NVach']==5:
# NV_V_dot = zone_input['NVach']*zone_input['W']*zone_input['L']*zone_input['H']/3600
# qL.append(NV_V_dot)
# nvind = -20
# elif zone_input['NVach']>5:
NV_V_dot=nv_Operable(zone_input, t_in0q, toutL[hr], windDL[hr], windVL[hr], Fschedule, operableAreaFraction)#*3600
qL.append(NV_V_dot)
if NV_V_dot>0:nvind = -20
zone_input['V_dot'] = zone_input['V_dot'] + NV_V_dot
# qL.append(q_)
# elif 5 < toutL[hr] < zone_input['sp_lower']: zone_input['V_dot'] = 0.6*zone_input['W']*zone_input['L']*zone_input['H']/3600
else:
zone_input['V_dot'] = V_dot0
nvind = -100
ach.append(zone_input['V_dot'])
#ventilation heat losses, considered only when within the comfort range
if t_in0q>toutL[hr] and zone_input['V_dot']<maxVdot:infilLoss = zone_input['V_dot']*1.2*1000*(t_in0q-toutL[hr])#/3600
else: infilLoss =0
if t_in0q<toutL[hr]:infilGain = V_dot0*1.2*1000*(t_in0q-toutL[hr])
else: infilGain =0
Qinfilloss.append(infilLoss)
R = totResistance(zone_input)
t_tau = timeConstant(R,zone_input)
# intGain(W, L, H, WWRs, WWRw, WWRn, WWRe, SHGC,qradHS,qradHW,qradHN,qradHE,shadingFac)
solarGain = intGain(zone_input['W'],zone_input['L'],zone_input['H'],
zone_input['WWRs'],zone_input['WWRw'],zone_input['WWRn'],zone_input['WWRe'],
zone_input['shgc'],qradHS[hr],qradHW[hr],qradHN[hr],qradHE[hr],zone_input['shadingFac'])
solarGL.append(solarGain)
internalG_Total = solarGain + (LPD*lgtSch[hr] + EPD*eqpSch[hr] + PPD*occ[hr])*zone_input['W']*zone_input['L']
loadBalance=internalG_Total-infilLoss
internalGT.append(internalG_Total)
q_light += LPD*lgtSch[hr]*LPD_floorPercentage
q_eqpt += EPD*eqpSch[hr]
#Check if NV is not sufficient or if cooling is needed
qcool, qheat = 0,0
Tin_n_ = Tin_new (R, loadBalance, toutL[hr], t_in0q, t_tau)
if Tin_n_ >= zone_input['sp_upper'] and zone_input['Ccop']>0:
zone_input['V_dot'] = V_dot0
R = totResistance(zone_input)
t_tau = timeConstant(R,zone_input)
if occ[hr]==0 and Tin_n_ >= t_upperSetBack:
qcool = Qcool(R, loadBalance, toutL[hr], t_in0q, t_upperSetBack, t_tau)
Tin_n_ = t_upperSetBack
else:
qcool = Qcool(R, loadBalance, toutL[hr], t_in0q, zone_input['sp_upper'], t_tau)
Tin_n_ = zone_input['sp_upper']
qsystem_c += qcool
# qsystemL_c.append(round(qcool/1000,1))
qsystemL_c.append(-20)
# internalG_Total += qcool
# Tin_n_ = Tin_new (R, internalG_Total, toutL[hr], t_in0q, t_tau) ##Indoor temperture after cooling
else:
qsystemL_c.append(-100)
if Tin_n_ <= zone_input['sp_lower'] and zone_input['Hcop']>0:
zone_input['V_dot'] = V_dot0
R = totResistance(zone_input)
t_tau = timeConstant(R,zone_input)
if occ[hr]>0:
qheat = Qheat(R, loadBalance, toutL[hr], t_in0q, zone_input['sp_lower'], t_tau)
Tin_n_ = zone_input['sp_lower']
else:
qheat = Qheat(R, loadBalance, toutL[hr], t_in0q, t_lowerSetBack, t_tau)
Tin_n_ = t_lowerSetBack
qsystem_h += qheat
# qsystemL_h.append(round(qheat/1000,1))
qsystemL_h.append(-20)
# internalG_Total += qheat
# Tin_n_ = Tin_new (R, internalG_Total, toutL[hr], t_in0q, t_tau) ##Indoor temperture after heating
else:
qsystemL_h.append(-100)
nvonL.append(nvind)
t_inL_q.append(round(Tin_n_,1))
t_inL_q_.append(Tin_n_)
t_in0q = Tin_n_
hr+=1
hcElecCO2, hcGasCO2, hEnergy, cEnergy, hcElecCost, hcGasCost = 0,0,0,0,0,0
EUI_C, EUI_H = 0, 0
EUI_L = round(q_light/1000)
EUI_E = round(q_eqpt/1000)
if zone_input['Hcop']>0:
EUI_H = round(qsystem_h/(zone_input['Hcop']*Afloor*1000))
if zone_input['Hcop']<1:
hcGasCO2 = EUI_H*zone_input["coef_CO2gas"]
hcGasCost = EUI_H*zone_input["coef_Costgas"]
else:
hcElecCO2 = EUI_H*zone_input["coef_CO2elec"] #(kgCO2eq), Cost ($)
hcElecCost = EUI_H*zone_input["coef_Costelec"]
if zone_input['Ccop']>0:
EUI_C = abs(round(qsystem_c/(zone_input['Ccop']*Afloor*1000)))
hcElecCO2 += EUI_C*zone_input["coef_CO2elec"]
hcElecCost += EUI_C*zone_input["coef_Costelec"]
CO2_ELEC = round(hcElecCO2+(EUI_L+EUI_E)*zone_input["coef_CO2elec"],1)
CO2_GAS = round(hcGasCO2,1)
COST_ELEC = round(hcElecCost+(EUI_L+EUI_E)*zone_input["coef_Costelec"],1)
COST_GAS = round(hcGasCost,1)
t_inL_occFreq = []
for hr in range(0, len(t_inL_q)):
if occ[hr]>0.25: t_inL_occFreq.append(t_inL_q[hr])
a,b,c=Qinfilloss[5040:5208],internalGT[5040:5208],solarGL[5040:5208]
balance = [i-j for i, j in zip(b,a)]
disHrs = comfortEval(t_inL_q_, zone_input['sp_lower'], zone_input['sp_upper'], occ)
return (qsystemL_h, qsystemL_c, disHrs,t_inL_q,EUI_H,EUI_C, EUI_L,EUI_E, nvonL, CO2_ELEC, CO2_GAS, COST_ELEC, COST_GAS,t_inL_occFreq)