forked from owid/covid-19-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlithuania.py
117 lines (101 loc) · 4.14 KB
/
lithuania.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import json
import requests
import pandas as pd
from cowidev.vax.utils.utils import make_monotonic
class Lithuania:
location: str = "Lithuania"
source_url_ref: str = "https://experience.arcgis.com/experience/cab84dcfe0464c2a8050a78f817924ca/page/page_3/"
vaccine_mapping = {
"AstraZeneca": "Oxford/AstraZeneca",
"Johnson & Johnson": "Johnson&Johnson",
"Moderna": "Moderna",
"Pfizer-BioNTech": "Pfizer/BioNTech",
}
source_url_coverage: str = "https://services3.arcgis.com/MF53hRPmwfLccHCj/arcgis/rest/services/covid_vaccinations_chart_new/FeatureServer/0/query"
query_params_coverage: dict = {
"f": "json",
"where": "municipality_code='00' AND vaccination_state<>'01dalinai'",
"returnGeometry": False,
"spatialRel": "esriSpatialRelIntersects",
"outFields": "date,vaccination_state,all_cum",
"resultOffset": 0,
"resultRecordCount": 32000,
"resultType": "standard",
}
source_url_doses: str = "https://services3.arcgis.com/MF53hRPmwfLccHCj/arcgis/rest/services/covid_vaccinations_by_drug_name_new/FeatureServer/0/query"
query_params_doses: dict = {
"f": "json",
"where": "municipality_code='00'",
"returnGeometry": False,
"spatialRel": "esriSpatialRelIntersects",
"outFields": "date,vaccines_used_cum,vaccine_name",
"resultOffset": 0,
"resultRecordCount": 32000,
"resultType": "standard",
}
def read(self, url, params):
res = requests.get(url, params=params)
if res.ok:
data = [elem["attributes"] for elem in json.loads(res.content)["features"]]
return pd.DataFrame.from_records(data)
raise ValueError("Source not valid/available!")
def pipe_parse_dates(self, df: pd.DataFrame) -> pd.DataFrame:
df["date"] = pd.to_datetime(df["date"], unit="ms").dt.date.astype(str)
return df
def pipe_clean_doses(self, df: pd.DataFrame) -> pd.DataFrame:
self.vaccine_start_dates = (
df[(df.vaccines_used_cum > 0) & (df.vaccine_name != "visos")]
.replace(self.vaccine_mapping)
.groupby("vaccine_name", as_index=False)
.min()
.drop(columns="vaccines_used_cum")
)
return (
df[(df.vaccines_used_cum > 0) & (df.vaccine_name == "visos")]
.drop(columns="vaccine_name")
.rename(columns={"vaccines_used_cum": "total_vaccinations"})
)
def pipe_clean_coverage(self, df: pd.DataFrame) -> pd.DataFrame:
df = (
df.pivot(index="date", columns="vaccination_state", values="all_cum")
.reset_index()
.rename(
columns={
"00visos": "people_vaccinated",
"02pilnai": "people_fully_vaccinated",
"03pakartotinai": "total_boosters",
}
)
)
return df[df.people_vaccinated > 0]
def _find_vaccines(self, date):
vaccines = self.vaccine_start_dates.loc[self.vaccine_start_dates.date <= date, "vaccine_name"].values
return ", ".join(sorted(vaccines))
def pipe_add_vaccines(self, df: pd.DataFrame) -> pd.DataFrame:
df["vaccine"] = df.date.apply(self._find_vaccines)
return df
def pipe_metadata(self, df: pd.DataFrame) -> pd.DataFrame:
return df.assign(
location=self.location,
source_url=self.source_url_ref,
)
def export(self, paths):
coverage = (
self.read(self.source_url_coverage, self.query_params_coverage)
.pipe(self.pipe_parse_dates)
.pipe(self.pipe_clean_coverage)
)
doses = (
self.read(self.source_url_doses, self.query_params_doses)
.pipe(self.pipe_parse_dates)
.pipe(self.pipe_clean_doses)
)
df = (
pd.merge(coverage, doses, how="inner", on="date")
.pipe(self.pipe_add_vaccines)
.pipe(self.pipe_metadata)
.pipe(make_monotonic)
)
df.to_csv(paths.tmp_vax_out(self.location), index=False)
def main(paths):
Lithuania().export(paths)