diff --git a/examples/anbncn/anbncn_lstm.py b/examples/anbncn/anbncn_lstm.py deleted file mode 100644 index 474e9a6..0000000 --- a/examples/anbncn/anbncn_lstm.py +++ /dev/null @@ -1,265 +0,0 @@ -import random -from pathlib import Path -from time import time -from typing import Tuple, List - -import numpy as np -import torch -from torch import nn -from torch.optim import Adam - -from context import ContextualizedTerm -from examples.anbncn.anbncn_data import ABCDataset -from examples.models import MNISTNet, LSTMSequenceImage, ImageEncoder - -root = Path(__file__).parent -data_root = root / ".." / ".." / "data" / "processed" - - -def get_term_datasets( - allow_non_threefold: bool, - data_seed: int, - max_length: int, - min_length: int, - test_size: int, - train_size: int, - val_num_digits: int, - val_size: int, -) -> Tuple[ABCDataset, ABCDataset, ABCDataset]: - train_data = ABCDataset( - split="train", - size=train_size, - min_length=min_length, - max_length=max_length, - allow_non_threefold=allow_non_threefold, - seed=data_seed, - val_num_digits=val_num_digits, - ) - val_data = ABCDataset( - split="val", - size=val_size, - min_length=min_length, - max_length=max_length, - allow_non_threefold=allow_non_threefold, - seed=data_seed, - val_num_digits=val_num_digits, - ) - test_data = ABCDataset( - split="test", - size=test_size, - min_length=min_length, - max_length=max_length, - allow_non_threefold=allow_non_threefold, - seed=data_seed, - ) - return train_data, val_data, test_data - - -def convert_term_to_sequence( - ct: ContextualizedTerm, device -) -> Tuple[float, torch.Tensor]: - label = float(ct.term.arguments[0].functor) - tensor_tokens = ct.term.arguments[1] - tensors = [ - ct.context.get_tensor_representation(token).to(device) - for token in tensor_tokens - ] - tensor_sequence = torch.stack(tensors).to(device) - return label, tensor_sequence - - -def convert_terms_to_sequence( - terms: ABCDataset, - device, - shuffle=False, -) -> Tuple[torch.Tensor, List[torch.Tensor]]: - if shuffle: - terms = list(terms) - random.shuffle(terms) - tuples = [convert_term_to_sequence(term, device=device) for term in terms] - labels, sequences = zip(*tuples) - labels = torch.tensor(labels, device=device) - return labels, sequences - - -def should_log(self, batch_idx, dataloader, epoch, epochs): - return batch_idx % self.log_freq == 0 or ( - epoch == epochs - 1 and batch_idx % len(dataloader) == len(dataloader) - 1 - ) - - -def run( - min_length: int = 3, - max_length: int = 21, - allow_non_threefold: bool = False, - # - epochs=1, - batch_size=32, - lr=1e-3, - loss_function=nn.BCELoss(), - iterations=1, - # - image_encoder_size=200, - rnn_hidden_size=200, - # - train_size=None, - val_size=None, - test_size=None, - val_num_digits=300, - # - log_freq=5, - data_seed=None, -): - # Load the MNIST model, and Adam optimiser - device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - - train_terms, val_terms, test_terms = get_term_datasets( - allow_non_threefold=allow_non_threefold, - data_seed=data_seed, - max_length=max_length, - min_length=min_length, - test_size=test_size, - train_size=train_size, - val_num_digits=val_num_digits, - val_size=val_size, - ) - train_labels, train_data = convert_terms_to_sequence( - train_terms, shuffle=True, device=device - ) - val_labels, val_data = convert_terms_to_sequence( - val_terms, shuffle=True, device=device - ) - test_labels, test_data = convert_terms_to_sequence( - test_terms, shuffle=True, device=device - ) - - def calculate_accuracy( - model, targets: torch.Tensor, data: List[torch.Tensor] - ) -> float: - predicted_targets: torch.Tensor = model.forward(data) - predicted_labels = (predicted_targets >= 0.5).float() - correct = sum(targets == predicted_labels) - return float(correct) / len(data) - - best_test_accs = np.zeros(iterations) - for i in range(iterations): - image_encoder = ImageEncoder(output_features=image_encoder_size) - rnn = LSTMSequenceImage(image_encoder, image_encoder_size, rnn_hidden_size) - rnn.to(device=device) - optimizer = Adam(rnn.parameters(), lr=lr) - - def get_val_accuracy(): - return calculate_accuracy(rnn, val_labels, val_data) - - def get_test_accuracy(): - return calculate_accuracy(rnn, test_labels, test_data) - - best_test_acc, best_val_acc = perform_training( - batch_size, - epochs, - get_test_accuracy, - get_val_accuracy, - log_freq, - loss_function, - optimizer, - rnn, - train_data, - train_labels, - ) - print() - print("Best validation acc", best_val_acc) - print("Best test acc", best_test_acc) - best_test_accs[i] = best_test_acc - - print("\n\nResults:") - print("All:", best_test_accs) - print("Mean:", np.mean(best_test_accs)) - print("Std:", np.std(best_test_accs)) - - -def perform_training( - batch_size, - epochs, - get_test_accuracy, - get_val_accuracy, - log_freq, - loss_function, - optimizer, - rnn, - train_data, - train_labels, -): - total_batches = 0 - total_loss = 0 - instances_since_last_log = 0 - print("Epoch\tBatch\tLoss\t\tVal\t\tTest\ttime") - start_time = time() - best_val_acc = 0 - best_test_acc = 0 - for epoch in range(epochs): - number_of_batches = (len(train_labels) + batch_size - 1) // batch_size - for batch_idx in range(number_of_batches): - batch_end = min(len(train_labels), (batch_idx + 1) * batch_size) - batch_data = train_data[batch_idx * batch_size : batch_end] - batch_labels = train_labels[batch_idx * batch_size : batch_end] - - # Cross-Entropy (CE) loss - predicted = rnn.forward(batch_data) - loss = loss_function(predicted, batch_labels) - loss.backward() - optimizer.step() - optimizer.zero_grad() - - # Save loss for printing - total_loss += float(loss) - instances_since_last_log += len(batch_labels) - - # Print the loss every log_freq batches, as well as the final batch - if batch_idx % log_freq == 0 or ( - epoch == epochs - 1 - and ((batch_idx + 1) * batch_size >= len(train_data)) - ): - val_acc = get_val_accuracy() - test_acc = get_test_accuracy() - - # Store best one so far - if val_acc >= best_val_acc: - best_val_acc = val_acc - best_test_acc = test_acc - - print( - "{}\t\t{}\t\t{:.5f}\t\t{:.3f}\t{:.3f}\t{:.2f}".format( - epoch, - batch_idx, - total_loss / instances_since_last_log, - val_acc, - test_acc, - time() - start_time, - ) - ) - total_loss = 0 - instances_since_last_log = 0 - - total_batches += 1 - return best_test_acc, best_val_acc - - -if __name__ == "__main__": - run( - min_length=3, - max_length=12, - allow_non_threefold=False, - val_num_digits=300, - # - # train_size=2, - # val_size=2, - # test_size=2, - train_size=4000, - val_size=100, - test_size=200, - # - log_freq=10, - epochs=1, - iterations=5, - data_seed=42, - ) diff --git a/examples/anbncn/anbncn_old.pl b/examples/anbncn/anbncn_old.pl deleted file mode 100644 index ec4cd57..0000000 --- a/examples/anbncn/anbncn_old.pl +++ /dev/null @@ -1,3 +0,0 @@ -s --> rep(N,A), rep(N,B), rep(N,C),{A\=B, B\=C, C\=A}. -rep(0, _) --> []. -rep(s(N), C) --> [X], rep(N,C), {domain(C, [a,b,c]), nn(mnist, X, C)}. \ No newline at end of file