-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparams.py
43 lines (36 loc) · 1.24 KB
/
hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
'''
record of hyperparameters
'''
###################################################################################################
'''
only the value at 'layer_s' matters here since we are loading a pre-trained model and the layer size needs to match
ranges for tunining are not included here because we are loading a model that has already been trained
'''
no_bp_hyperparams = \
{
'baseline1': {'l_rate': 0.0001, 'l2': 0.0001, 'batch': 5, 'n_layer': 3, 'layer_s': 75, 'long': 10000, 'weight': [1, 65]}, \
}
bp_stats_hyperparams = \
{
'baseline1': {'l_rate': 0.0001, 'l2': 0.001, 'batch': 5, 'n_layer': 3, 'layer_s': 75, 'long': 10000, 'weight': [1, 65]}, \
}
bp_traj_hyperparams = \
{
'baseline1': {'l_rate': 0.0001, 'l2': 0.0001, 'batch': 5, 'n_layer': 3, 'layer_s': 75, 'long': 10000, 'weight': [1, 65]}, \
}
###################################################################################################
'''
putting everything together
'''
all_hyperparams = \
{
'no_bp': no_bp_hyperparams, \
'bp_stats': bp_stats_hyperparams, \
'bp_traj': bp_traj_hyperparams, \
}
###################################################################################################
'''
main block
'''
if __name__ == '__main__':
print(':)')