-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpreprocessor_script.py
68 lines (57 loc) · 2.69 KB
/
preprocessor_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import pickle
import os
class Flight_Data_Normalizer:
def __init__(self, load_model = False):
self.scaler = MinMaxScaler()
if load_model:
self.scaler = pickle.load(open('scaler.pkl','rb'))
def fit(self, X,y=None):
self.scaler.partial_fit(X,y)
return
def save(self):
pickle.dump(self.scaler,open('scaler.pkl','wb+'))
def normalize(self,X):
return self.scaler.transform(X)
if __name__ == '__main__':
symbolDict={}
symbolCounter=0.
directory=os.fsencode("Flight Data")
normalizer=Flight_Data_Normalizer()
for root, dirs, files in os.walk(directory):
for file in files:
with open(os.path.join(root,file), 'rt') as flightdata:
try:
next(flightdata)
for row in flightdata:
row=row.rstrip().split(',')
#input=row[0:3,5,7,8,9,11,16,17,18,23]
if not "NA" in row[0:4]+[row[5]]+row[7:10]+[row[11]]+row[16:19]+ [row[23]] and not "NA" in row [14]:
target = float(row[14])
input=[float(x) for x in row[0:4]+[row[5]]+[row[7]]]
if not row[8] in symbolDict.keys():
symbolDict[row[8]]=symbolCounter
symbolCounter=symbolCounter+1.
input.append(symbolDict[row[8]])
if not row[9] in symbolDict.keys():
symbolDict[row[9]]=symbolCounter
symboprilCounter=symbolCounter+1.
input.append(symbolDict[row[9]])
input.append(float(row[11]))
if not row[16] in symbolDict.keys():
symbolDict[row[16]]=symbolCounter
symbolCounter=symbolCounter+1.
input.append(symbolDict[row[16]])
if not row[17] in symbolDict.keys():
symbolDict[row[17]]=symbolCounter
symbolCounter=symbolCounter+1.
input.append(symbolDict[row[17]])
input.append(float(18))
input.append(float(row[23]))
#print ("Input: " +str(input))
normalizer.fit(np.array(input).reshape(1,-1))
except(UnicodeDecodeError):
pass
print( "file run through: "+str(file))
normalizer.save()