forked from Networks-Learning/tpprl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyze-broadcasting.py
executable file
·464 lines (391 loc) · 18.7 KB
/
analyze-broadcasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python
import warnings
# This removes the annoying warning from h5py
warnings.simplefilter(action='ignore', category=FutureWarning)
import click
import pandas as pd
import os
import glob
import numpy as np
import sys
import dill
import multiprocessing as MP
import redqueen.utils as RU
import redqueen.opt_runs as OR
import redqueen.opt_model as OM
import tpprl.read_data_utils as RDU
import tpprl.exp_broadcaster as EB
import tpprl.exp_sampler as ES
import natsort
from collections import defaultdict
# import decorated_options as Deco
# This ensures that cvxopt uses only one thread for computation.
# Otherwise, the computation leaks onto other cores and causes multiple
# context switches, slowing down the overall calculation.
os.environ['OMP_NUM_THREADS'] = "1"
user_data = None
MAX_EVENTS = 8000
MAX_ITERS = 500
REWARD_STEPS = 1000
def read_user_data(user_data_file):
"""Reading the user_data into a global file so that we can share it across
processes, without having to keep multiple copies in memory."""
global user_data
with open(user_data_file, 'rb') as f:
user_data = dill.load(f)
def worker_user(params):
"""
Worker for calculating metrics for one user.
Uses only one core.
"""
(user_idx, output_dir, test_batches, RQ_cap_adjust,
for_epoch, verbose, only_rl, algo_feed, algo_frac, merge_sinks,
set_wt_zero) = params
save_dir = os.path.join(output_dir, EB.SAVE_DIR_TMPL.format(user_idx))
if verbose:
print('Working on user_idx: {}'.format(user_idx))
with open(os.path.join(save_dir, 'user_opt_dict.dill'), 'rb') as f:
user_opt_dict = dill.load(f)
one_user_data = user_data[user_idx]
if merge_sinks:
if verbose:
print('Merged sinks!')
one_user_data = RDU.merge_sinks(one_user_data)
ret = {
'user_idx': user_idx,
'user_id': one_user_data['user_id'],
'num_other_posts': one_user_data['num_other_posts'],
'num_own_posts': one_user_data['num_user_events'],
'num_followees': one_user_data['num_followees'],
'duration': one_user_data['duration'],
'num_followers': user_opt_dict['num_followers'],
'N': user_opt_dict['N'],
'reward_kind': user_opt_dict['trainer_opts_dict']['reward_kind'],
'for_epoch': for_epoch,
'num_batches': test_batches,
'algo_feed': algo_feed,
}
window_start, eval_sim_opts = EB.make_real_data_batch_sim_opts(
one_user_data=one_user_data,
N=user_opt_dict['N'],
seed=-1,
is_test=True
)
ret['window_start'] = window_start
ret['window_end'] = eval_sim_opts.end_time
# The file names are of the form `*/tpprl.ckpt-<num>.meta`.
# Hence, the number is interpreted as negative.
# So to extract the last checkpoint, we do a sort by real-values and
# pick the most negative value.
# Also, we drop the `.meta` suffix.
if for_epoch < 0:
for_epoch = EB.find_largest_chpt(save_dir, verbose=verbose)
if for_epoch is None:
return ret
chosen_chpt_file = os.path.join(save_dir, EB.TPPRL_CHPT_TMPL.format(for_epoch))
if verbose:
print('chosen_chpt_file = ', chosen_chpt_file)
ret['chpt_file'] = chosen_chpt_file
if not os.path.exists(chosen_chpt_file + '.meta'):
ret['error'] = 'File Not Found: {}.'.format(chosen_chpt_file)
return ret
rl_b_dict = EB.rl_b_dict_from_chpt(
# '/NL/crowdjudged/work/rl-broadcast/r_2-sim-opt-fix/train-save-user_idx-218/tpprl.ckpt-898',
chosen_chpt_file,
one_user_data=one_user_data,
window_start=window_start,
user_opt_dict=user_opt_dict
)
if set_wt_zero:
rl_b_dict['wt'] = 0
sink_ids = one_user_data['sim_opts'].sink_ids
if algo_feed:
algo_c = user_opt_dict['algo_c']
lifetimes = defaultdict(lambda: (eval_sim_opts.end_time - window_start) * algo_frac)
# algo_feed_args = ES.make_prefs(sink_ids, src_ids, seed=algo_feed_seed,
# src_lifetime_dict=lifetimes)
algo_feed_args = ES.make_freq_prefs(
one_user_data=one_user_data,
sink_ids=sink_ids,
src_lifetime_dict=lifetimes
)
rl_b_dict['algo_feed'] = algo_feed
rl_b_dict['algo_feed_args'] = algo_feed_args
rl_b_dict['algo_c'] = algo_c
rl_b_dict['t_min'] = window_start
# This is the "K" in top-K
K = 1
if 'q' in user_opt_dict:
q = user_opt_dict['q']
else:
warnings.warn('Setting q manually.')
reward_kind = user_opt_dict['trainer_opts_dict']['reward_kind']
if reward_kind == 'r_2_reward':
q = 100.0
elif reward_kind == 'top_k_reward':
q = 1.0
init_seed = 865
rl_dfs = []
rl_events = []
rl_u_2 = []
for idx in range(test_batches):
mgr, exp_b = EB.get_real_data_mgr_chpt_np(
rl_b_dict,
t_min=window_start,
batch_sim_opt=eval_sim_opts,
seed=init_seed + idx,
with_broadcaster=True
)
mgr.run_dynamic(max_events=MAX_EVENTS)
rl_dfs.append(mgr.get_state().get_dataframe())
rl_events.append(mgr.state.events)
# Calculating the u^2 loss
c_is = exp_b.get_all_c_is()
time_deltas = exp_b.get_all_time_deltas()
rl_u_2.append(exp_b.exp_sampler.calc_quad_loss(time_deltas, c_is))
num_tweets = [RU.num_tweets_of(df, broadcaster_id=eval_sim_opts.src_id)
for df in rl_dfs]
capacity_cap, capacity_std = np.mean(num_tweets), np.std(num_tweets)
ret['capacity'] = capacity_cap
ret['capacity_std'] = capacity_std
ret['RL_u_2_mean'] = np.mean(rl_u_2)
ret['RL_u_2_std'] = np.std(rl_u_2)
if not only_rl:
# Figure out what 'q' to use for RQ to get the same number of tweets.
# Removing 'RQ_cap_adjust' because RQ systematically tweets more.
q_RQ = RU.sweep_q(eval_sim_opts, capacity_cap=capacity_cap - RQ_cap_adjust,
verbose=verbose, q_init=q, parallel=False, max_events=MAX_EVENTS,
max_iters=MAX_ITERS, only_tol=True, tol=0.1)
ret['q_RQ'] = q_RQ
# Run RedQueen.
RQ_dfs = []
RQ_events = []
for idx in range(test_batches):
# Deliberately using eval_sim_opts.s, as it was used to calculate q_RQ.
# It seems to be initialized to constant (equal significance).
opt = OM.Opt(src_id=eval_sim_opts.src_id,
s=eval_sim_opts.s, seed=init_seed + idx, q=q_RQ)
mgr = eval_sim_opts.update({'q': q_RQ}).create_manager_with_broadcaster(opt)
# mgr = eval_sim_opts.update({}).create_manager_with_opt(seed=init_seed + idx)
mgr.state.time = window_start
mgr.run_dynamic(max_events=MAX_EVENTS)
RQ_dfs.append(mgr.get_state().get_dataframe())
RQ_events.append(opt.state.events)
if algo_feed:
# Figure out what 'q' to use for RQ to get the same number of tweets.
# Removing 'RQ_cap_adjust' because RQ systematically tweets more.
q_RQ_algo = ES.sweep_q_algo(
sim_opts=eval_sim_opts,
capacity_cap=capacity_cap - RQ_cap_adjust,
algo_feed_args=algo_feed_args,
algo_c=algo_c,
verbose=verbose,
q_init=1000.0,
max_events=MAX_EVENTS,
max_iters=MAX_ITERS,
tol=0.1,
only_tol=True,
t_min=window_start,
)
ret['q_RQ_algo'] = q_RQ_algo
# Run RedQueen heuristic.
RQ_algo_dfs = []
RQ_algo_events = []
for idx in range(test_batches):
# Deliberately not using eval_sim_opts.s, it seems to be initialized to
# something strange.
opt = ES.OptAlgo(src_id=eval_sim_opts.src_id, seed=init_seed + idx, q=q_RQ_algo,
algo_feed_args=algo_feed_args, algo_c=algo_c)
mgr = eval_sim_opts.update({'q': q_RQ_algo}).create_manager_with_broadcaster(opt)
# mgr = eval_sim_opts.update({}).create_manager_with_opt(seed=init_seed + idx)
mgr.state.time = window_start
mgr.run_dynamic(max_events=MAX_EVENTS)
RQ_algo_dfs.append(mgr.get_state().get_dataframe())
RQ_algo_events.append(opt.state.events)
# Run Poisson.
poisson_dfs = []
poisson_events = []
rate = capacity_cap / (eval_sim_opts.end_time - window_start)
for idx in range(test_batches):
poisson = OM.Poisson2(src_id=eval_sim_opts.src_id, seed=init_seed + idx, rate=rate)
mgr = eval_sim_opts.create_manager_with_broadcaster(poisson)
mgr.state.time = window_start
mgr.run_dynamic(max_events=MAX_EVENTS)
poisson_dfs.append(mgr.get_state().get_dataframe())
poisson_events.append(mgr.get_state().events)
# Running Karimi
T = eval_sim_opts.end_time - window_start
num_segments = 10
seg_len = T / num_segments
wall_mgr = eval_sim_opts.create_manager_for_wall()
wall_mgr.run_dynamic(max_events=MAX_EVENTS)
wall_df = wall_mgr.state.get_dataframe()
ret['num_segments'] = num_segments
ret['num_wall_tweets'] = wall_df.event_id.nunique()
seg_idx = ((wall_df.t.values - window_start) / T * num_segments).astype(int)
intensity_df = (wall_df.groupby(['sink_id', pd.Series(seg_idx, name='segment')]).size() / (T / num_segments)).reset_index(name='intensity')
wall_intensities_df = intensity_df.pivot_table(values='intensity', index='sink_id', columns='segment').fillna(0)
for seg_idx in range(num_segments):
if seg_idx not in wall_intensities_df.columns:
wall_intensities_df[seg_idx] = 0.0
wall_intensities = wall_intensities_df[list(range(num_segments))].values
# This is the single-threaded version
params = (init_seed, capacity_cap, num_segments, eval_sim_opts, wall_intensities, None)
op = OR.worker_kdd(params, verbose=verbose, Ks=[K], window_start=window_start)
karimi_dfs = []
karimi_events = []
for idx in range(test_batches):
piecewise = OM.PiecewiseConst(
src_id=eval_sim_opts.src_id,
seed=init_seed * 2 + idx,
change_times=window_start + np.arange(num_segments) * seg_len,
rates=op['kdd_opt_{}'.format(K)] / seg_len
)
piecewise_const_mgr = eval_sim_opts.create_manager_with_broadcaster(piecewise)
piecewise_const_mgr.state.time = window_start
piecewise_const_mgr.run_dynamic(max_events=MAX_EVENTS)
df = piecewise_const_mgr.state.get_dataframe()
karimi_dfs.append(df)
karimi_events.append(piecewise_const_mgr.get_state().events)
# Calculating metrics
if only_rl:
all_settings = [('RL', rl_dfs)]
else:
all_settings = [('RL', rl_dfs), ('RQ', RQ_dfs), ('poisson', poisson_dfs),
('karimi', karimi_dfs)]
if algo_feed:
all_settings += [('RQ_algo', RQ_algo_dfs)]
metric_name = 'num_tweets'
for type, dfs in all_settings:
metric = [RU.num_tweets_of(df, broadcaster_id=eval_sim_opts.src_id) for df in dfs]
ret[type + '_' + metric_name + '_mean'], ret[type + '_' + metric_name + '_std'] = (np.mean(metric), np.std(metric))
metric_name = 'top_k'
for type, dfs in all_settings:
metric = [RU.time_in_top_k(df, K=K, sim_opts=eval_sim_opts) for df in dfs]
ret[type + '_' + metric_name + '_mean'], ret[type + '_' + metric_name + '_std'] = (np.mean(metric), np.std(metric))
metric_name = 'avg_rank'
for type, dfs in all_settings:
metric = [RU.average_rank(df, sim_opts=eval_sim_opts) for df in dfs]
ret[type + '_' + metric_name + '_mean'], ret[type + '_' + metric_name + '_std'] = (np.mean(metric), np.std(metric))
metric_name = 'r_2'
for type, dfs in all_settings:
metric = [RU.int_r_2(df, sim_opts=eval_sim_opts) for df in dfs]
ret[type + '_' + metric_name + '_mean'], ret[type + '_' + metric_name + '_std'] = (np.mean(metric), np.std(metric))
if algo_feed:
if only_rl:
all_settings = [('RL', rl_events)]
else:
all_settings = [('RL', rl_events), ('RQ', RQ_events),
('poisson', poisson_events), ('karimi', karimi_events)]
if algo_feed:
all_settings += [('RQ_algo', RQ_algo_events)]
for type, all_events in all_settings:
r_2_algo = []
r_algo = []
top_k_algo = []
for events in all_events:
# Calculate some metrics here itself.
times, r_2 = ES.algo_true_rank(
sink_ids=sink_ids,
src_id=eval_sim_opts.src_id,
events=events,
start_time=window_start,
end_time=eval_sim_opts.end_time,
steps=REWARD_STEPS,
all_prefs=algo_feed_args,
square=True,
c=algo_c
)
r_2_algo.append(np.sum(r_2) * (times[1] - times[0]))
times, ranks = ES.algo_true_rank(
sink_ids=sink_ids,
src_id=eval_sim_opts.src_id,
events=events,
start_time=window_start,
end_time=eval_sim_opts.end_time,
steps=REWARD_STEPS,
all_prefs=algo_feed_args,
square=False,
c=algo_c
)
r_algo.append(np.sum(ranks) * (times[1] - times[0]))
times, top_ks = ES.algo_top_k(
sink_ids=sink_ids,
src_id=eval_sim_opts.src_id,
events=events,
start_time=window_start,
end_time=eval_sim_opts.end_time,
K=K,
steps=REWARD_STEPS,
all_prefs=algo_feed_args,
c=algo_c
)
top_k_algo.append(np.sum(top_ks) * (times[1] - times[0]))
ret[type + '_r_2_algo_mean'] = np.mean(r_2_algo)
ret[type + '_r_2_algo_std'] = np.std(r_2_algo)
ret[type + '_avg_rank_algo_mean'] = np.mean(r_algo)
ret[type + '_avg_rank_algo_std'] = np.std(r_algo)
ret[type + '_top_k_algo_mean'] = np.mean(top_k_algo)
ret[type + '_top_k_algo_std'] = np.std(top_k_algo)
return ret
@click.command()
@click.argument('tweeters_data_file')
@click.argument('output_dir')
@click.argument('save_csv')
@click.option('--batches', 'batches', help='How large should the test batches be.', default=64, show_default=True)
@click.option('--force/--no-force', 'force', help='Whether to overwrite the output-csv file.', default=False, show_default=True)
@click.option('--RQ-cap-adjust', 'RQ_cap_adjust', help='How much to compensate the tweets of RedQueen by.', default=1.0, show_default=True)
@click.option('--for-epoch', 'for_epoch', help='Whether to produce the CSV for a given epoch. Negative numbers of running it on the latest epoch. Can provide a comma separated list to run it on multiple epochs one after the other.', default='-1', show_default=True)
@click.option('--limit-num-users', 'limit_num_users', help='Select only these many users to run the experiments on. Selection is sorted by first the number of training checkpoints and then the idx. Set negative to run on all users.', default=-1, show_default=True)
@click.option('--parallel/--no-parallel', 'parallel', help='Whether to run on Multi-processing.', default=True, show_default=True)
@click.option('--verbose/--no-verbose', 'verbose', help='Verbose mode.', default=False, show_default=True)
@click.option('--only-rl/--no-only-rl', 'only_rl', help='Calculate only RL stats.', default=False, show_default=True)
@click.option('--algo-feed/--no-algo-feed', 'algo_feed', help='Consider algorithmic feeds?', default=False, show_default=True)
@click.option('--algo-frac', 'algo_frac', help='What fraction of the window is the lifetime of the priority queue?', default=0.1, show_default=True)
@click.option('--merge-sinks/--no-merge-sinks', 'merge_sinks', help='Whether to merge the sinks or not.', default=True, show_default=True)
@click.option('--set-wt-zero/--no-set-wt-zero', 'set_wt_zero', help='Force wt to be zero.', default=False, show_default=True)
def run(output_dir, save_csv, tweeters_data_file, batches, force, RQ_cap_adjust, for_epoch,
parallel, verbose, only_rl, algo_feed, algo_frac, merge_sinks, set_wt_zero,
limit_num_users):
"""Read all OUTPUT_DIR and compile the results for all users and save them in SAVE_CSV.
The user data is read from IN_DATA_FILE and `batches` number of batches are executed.
"""
cmd(output_dir, save_csv, tweeters_data_file, batches, force,
RQ_cap_adjust, for_epoch, parallel, verbose, only_rl, algo_feed,
algo_frac, merge_sinks, set_wt_zero, limit_num_users)
def cmd(output_dir, save_csv, tweeters_data_file, batches, force, RQ_cap_adjust,
for_epoch, parallel, verbose, only_rl, algo_feed, algo_frac, merge_sinks,
set_wt_zero, limit_num_users):
if os.path.exists(save_csv) and not force:
print('File {} exists and --force was not supplied.'.format(save_csv))
sys.exit(-1)
read_user_data(tweeters_data_file)
save_dirs = glob.glob(os.path.join(output_dir, EB.SAVE_DIR_GLOB))
user_idxes = [int(EB.SAVE_DIR_REGEX.search(x)[1]) for x in save_dirs]
if limit_num_users > 0:
raise NotImplementedError
all_epochs = [int(x) for x in for_epoch.split(',')]
save_dict = []
all_params = [(x, output_dir, batches, RQ_cap_adjust,
for_epoch_, verbose, only_rl, algo_feed, algo_frac,
merge_sinks, set_wt_zero)
for x in user_idxes
for for_epoch_ in all_epochs]
try:
if parallel:
with MP.Pool() as pool:
for x in pool.imap_unordered(worker_user, all_params):
save_dict.append(x)
else:
for param in all_params:
save_dict.append(worker_user(param))
finally:
# Save something even if we have to kill the simulation at some point.
save_df = pd.DataFrame(save_dict)
save_csv_dir = os.path.dirname(save_csv)
if save_csv_dir != '':
os.makedirs(save_csv_dir, exist_ok=True)
save_df.to_csv(save_csv, index=False)
print('Saved {} users.'.format(len(save_dict)))
if __name__ == '__main__':
run()