forked from Networks-Learning/tpprl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train-broadcasting.py
executable file
·262 lines (226 loc) · 10.8 KB
/
train-broadcasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python
import warnings
# This removes the annoying warning from h5py
warnings.simplefilter(action='ignore', category=FutureWarning)
import click
import dill
import os
import tpprl.exp_sampler as ES
import tpprl.exp_broadcaster as EB
import tpprl.read_data_utils as RDU
from tpprl.utils import _now
import tensorflow as tf
import numpy as np
import warnings
import sys
from collections import defaultdict
def log_eval(u_data):
mean_reward = np.mean(u_data['rewards'])
mean_loss = np.mean(u_data['loss'])
if 'RQ_perf' in u_data:
mean_RQ = np.mean(u_data['RQ_perf'])
else:
mean_RQ = -1
print('Mean reward = {}, Mean loss = {}, CTG = {}, RQ = {}'
.format(mean_reward, mean_loss, mean_reward + mean_loss, mean_RQ))
@click.command()
@click.argument('all_user_data_file', type=click.Path(exists=True))
@click.argument('user_idx', type=int)
@click.argument('output_dir')
@click.option('--N', 'N', help='How many posts to consider in a window.', default=300, show_default=True)
@click.option('--q', help='Weight of the regularizer.', default=100.0, show_default=True)
@click.option('--gpu', help='Which GPU device to use.', default='/gpu:0', show_default=True) # Is also effected by masking via CUDA_VISIBLE_DEVICES.
@click.option('--hidden-dims', 'hidden_dims', help='How many hidden dimensions to use.', default=8, show_default=True)
@click.option('--epochs', 'epochs', help='How many epochs to train for.', default=200, show_default=True)
@click.option('--num-iters', 'num_iters', help='How many iterations in each epoch.', default=20, show_default=True)
@click.option('--save-every', 'save_every', help='How many epochs to save a copy to disk.', default=5, show_default=True)
@click.option('--only-cpu/--no-only-cpu', 'only_cpu', help='Whether to use GPUs at all.', default=False, show_default=True)
@click.option('--with-summaries/--no-with-summaries', 'with_summaries', help='Whether to produce summaries in output_dir.', default=False, show_default=True)
@click.option('--reward', 'reward_kind', help='What kind of reward to use.', default='r_2_reward', show_default=True)
@click.option('--reward-top-k', 'K', help='The K in top-k reward.', default=1, show_default=True)
@click.option('--restore/--no-restore', 'should_restore', help='Whether to restore from a previous save, if present.', default=True, show_default=True)
@click.option('--until', 'until', help='How many steps of iterations to run.', default=10000, show_default=True)
@click.option('--log-device-placement/--no-log-device-placement', 'log_device_placement', help='Whether to list which GPU is being used.', default=False, show_default=True)
@click.option('--allow-growth/--no-allow-growth', 'allow_growth', help='Whether to grow GPU memory or allocate all together.', default=True, show_default=True)
@click.option('--algo-feed/--no-algo-feed', 'algo_feed', help='Use algorithmic feeds.', default=False, show_default=True)
@click.option('--algo-c', 'algo_c', help='DEPRECATED: The decay parameter for algorithmic feeds.', default=0.5, show_default=True)
@click.option('--algo-lifetime-frac', 'algo_lifetime_frac', help='The decay parameter for algorithmic feeds.', default=0.1, show_default=True)
@click.option('--algo-approx/--no-algo-approx', 'with_approx_rewards', help='Whether to use exact or approximate rewards for algorithmic feeds.', default=True, show_default=True)
@click.option('--merge-sinks/--no-merge-sinks', 'merge_sinks', help='Should all followers be merged into one giant wall.', default=False, show_default=True)
@click.option('--with-zero-wt/--no-with-zero-wt', 'with_zero_wt', help='Force wt to be zero.', default=False, show_default=True)
def run(all_user_data_file, user_idx, output_dir, q, N, gpu, reward_kind, K, should_restore, algo_lifetime_frac,
hidden_dims, only_cpu, with_summaries, epochs, num_iters, save_every, until,
log_device_placement, allow_growth, algo_feed, algo_c, with_approx_rewards,
merge_sinks, with_zero_wt):
"""Read data from `all_user_data`, extract `user_idx` from the array and run code for it."""
assert reward_kind in [EB.R_2_REWARD, EB.TOP_K_REWARD], '"{}" is not recognized as a reward_kind.'.format(reward_kind)
save_dir = os.path.join(output_dir, EB.SAVE_DIR_TMPL.format(user_idx))
if not os.path.exists(save_dir) and should_restore:
warnings.warn('{} does not exist, will NOT RESTORE.'.format(save_dir))
with open(all_user_data_file, 'rb') as f:
all_user_data = dill.load(f)
one_user_data = all_user_data[user_idx]
if merge_sinks:
print(_now(), 'Merging the sinks!')
one_user_data = RDU.merge_sinks(one_user_data)
print(_now(), 'Making the trainer ...')
sim_opts = one_user_data['sim_opts'].update({'q': q})
num_other_broadcasters = len(sim_opts.other_sources)
num_followers = len(sim_opts.sink_ids)
# These parameters can also be made arguments, if needed.
max_events = 50000
reward_time_steps = 1000
decay_steps = 1
with_baseline = True
batch_size = 16
trainer_opts_seed = 42
trainer_opts = EB.mk_def_exp_recurrent_trainer_opts(
seed=trainer_opts_seed,
device_gpu=gpu,
hidden_dims=hidden_dims,
num_other_broadcasters=num_other_broadcasters,
only_cpu=only_cpu,
max_events=max_events,
reward_top_k=K,
reward_kind=reward_kind,
batch_size=batch_size,
decay_steps=decay_steps,
num_followers=num_followers,
with_baseline=with_baseline,
summary_dir=os.path.join(output_dir, 'train-summary-user_idx-{}/train'.format(user_idx)),
save_dir=save_dir,
set_wt_zero=with_zero_wt,
)
config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=log_device_placement
)
config.gpu_options.allow_growth = allow_growth
sess = tf.Session(config=config)
trainer = EB.ExpRecurrentTrainer(
sim_opts=sim_opts,
_opts=trainer_opts,
sess=sess
)
print(_now(), 'trainer made.')
sink_ids = one_user_data['sim_opts'].sink_ids
window_len = (one_user_data['duration'] / one_user_data['num_other_posts']) * N
lifetimes = defaultdict(lambda: algo_lifetime_frac * window_len)
algo_feed_seed = 42 + 1
algo_feed_args = ES.make_freq_prefs(
one_user_data=one_user_data,
sink_ids=sink_ids,
src_lifetime_dict=lifetimes
)
user_opt_dict = {}
user_opt_dict['trainer_opts_dict'] = trainer_opts._get_dict()
user_opt_dict['num_other_broadcasters'] = len(trainer.sim_opts.other_sources)
user_opt_dict['hidden_dims'] = trainer.num_hidden_states
user_opt_dict['num_followers'] = len(trainer.sim_opts.sink_ids)
user_opt_dict['seed'] = trainer_opts_seed
user_opt_dict['algo_feed'] = algo_feed
user_opt_dict['algo_feed_seed'] = algo_feed_seed
user_opt_dict['algo_feed_args'] = algo_feed_args
user_opt_dict['algo_c'] = algo_c
user_opt_dict['algo_with_approx_rewards'] = with_approx_rewards
user_opt_dict['algo_reward_time_steps'] = reward_time_steps
# Needed for experiments later
user_opt_dict['N'] = N
user_opt_dict['q'] = q
os.makedirs(trainer.save_dir, exist_ok=True)
with open(os.path.join(trainer.save_dir, 'user_opt_dict.dill'), 'wb') as f:
dill.dump(user_opt_dict, f)
trainer.initialize(finalize=True)
if should_restore and os.path.exists(save_dir):
try:
trainer.restore()
except (FileNotFoundError, AttributeError):
warnings.warn('"{}" exists, but no save files were found. Not restoring.'
.format(save_dir))
global_steps = trainer.sess.run(trainer.global_step)
if global_steps > until:
print(
_now(),
'Have already run {} > {} iterations, not going further.'
.format(global_steps, until)
)
op_dir = os.path.join(output_dir, 'u_data-user_idx-{}/'.format(user_idx))
os.makedirs(op_dir, exist_ok=True)
# start_time, end_time = one_user_data['user_event_times'][0], one_user_data['user_event_times'][-1]
if algo_feed:
u_datas = [EB.get_real_data_eval_algo(
trainer=trainer,
one_user_data=one_user_data,
N=N,
batch_c=algo_c,
algo_feed_args=algo_feed_args,
reward_time_steps=reward_time_steps,
with_approx_rewards=with_approx_rewards
)]
else:
u_datas = [EB.get_real_data_eval(trainer, one_user_data, N=N, with_red_queen=True)]
log_eval(u_datas[-1])
for epoch in range(epochs):
# Ensure that the output is pushed to the SLURM file.
sys.stdout.flush()
step = trainer.sess.run(trainer.global_step)
with_df = (epoch == epochs - 1) or (step > until)
if algo_feed:
EB.train_real_data_algo(
trainer=trainer,
N=N,
one_user_data=one_user_data,
num_iters=num_iters,
init_seed=42 + user_idx,
algo_feed_args=algo_feed_args,
with_summaries=with_summaries,
with_approx_rewards=with_approx_rewards,
batch_c=algo_c,
reward_time_steps=reward_time_steps,
)
u_datas.append(
EB.get_real_data_eval_algo(
trainer=trainer,
one_user_data=one_user_data,
N=N,
with_df=with_df,
algo_feed_args=algo_feed_args,
reward_time_steps=reward_time_steps,
with_approx_rewards=with_approx_rewards,
batch_c=algo_c,
)
)
else:
EB.train_real_data(
trainer,
N=N,
one_user_data=one_user_data,
num_iters=num_iters,
init_seed=42 + user_idx,
with_summaries=with_summaries
)
u_datas.append(
EB.get_real_data_eval(
trainer,
one_user_data,
N=N,
with_red_queen=True,
with_df=with_df
)
)
log_eval(u_datas[-1])
if (epoch + 1) % save_every == 0 or with_df:
file_name = 'u_data-{}.dill' if not with_df else 'u_data-{}-final.dill'
op_file_name = os.path.join(op_dir, file_name.format(step))
with open(op_file_name, 'wb') as f:
dill.dump(u_datas, f)
print(_now(), 'Saved: {}'.format(op_file_name))
if step > until:
print(
_now(),
'Have already run {} > {} iterations, not going further.'
.format(step, until)
)
break
if __name__ == '__main__':
run()