-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisual.py
564 lines (447 loc) · 20 KB
/
visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 8 17:17:32 2025
@author: mengshutang
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from matplotlib.colors import ListedColormap
import scipy.ndimage as ndimage
import analysis as an
import beam_info as bi
class visual:
"""
Visualization of PWFA window.
Initialization:
ts : time series info.
iteration : iteration number in PIC simulation.
n0 : benchmark plasma density; unit: cm^-3.
Attributes:
ts : time series info.
n0 : benchmark plasma density; unit: cm^-3.
rho : normalized plasma density w.r.t n0.
Ez : longitudinal electric field; unit: eV.
grid_info : grid metadata
Functions:
plot_field: plot rho field and Ez lineout.
plot_beam: plot beam density contour.
"""
def __init__(self,ts,iteration,n0):
self.ts = ts
self.n0 = n0
rho, rho_grid = ts.get_field(field = 'rho_electron',iteration = iteration)
Ez, E_grid = ts.get_field(field = 'Ez',iteration = iteration)
self.rho = rho * 6.25e12/n0
self.Ez = Ez
self.grid_info = rho_grid
def plot_field(self,axes,vmin,plot_number_density):
"""
plot rho field and Ez lineout at x = 0
Parameters
----------
axes : plt.axes
axes for the field plot.
vmin : int/float
maximum absolute plasma density used in colorbar
(note it should be a negative number, i.e. -10 corresponds to -10*n0 plasma density).
plot_number_density : Boolean
whether or not the beam number density will be plotted.
"""
#------------------------------------rho field------------------------------------
field_cmap = colors.LinearSegmentedColormap.from_list("", ["Black","midnightblue","darkblue","royalblue","cornflowerblue","white"])
grid_range_z = self.grid_info.z * 1e6 # in um
grid_range_x = self.grid_info.x * 1e6 # in um
rho_plot = axes.pcolormesh(grid_range_z, grid_range_x, np.transpose(self.rho),cmap = field_cmap, vmax = 0, vmin = vmin)
if plot_number_density:
cb_field = plt.colorbar(rho_plot, location='top', aspect=50, pad=0.01)
else:
cb_field = plt.colorbar(rho_plot, location='top', aspect=50, pad=0.07)
cb_field.set_label(f'Plasma density ({self.n0}'+r" cm$^{-3}$)",labelpad=-42, y=0.45,fontsize = 12)
#----------------------------------Ez center lineout------------------------------
ax_E_plot = axes.twinx()
Ez_center = self.Ez.T[int(np.rint(len(self.Ez)/2))]
Ez_center /= 1e9
ax_E_plot.plot(grid_range_z,Ez_center, c='r')
ax_E_plot.yaxis.label.set_color('red')
ax_E_plot.set(ylabel=r"$E_z$ $(GeV/m)$")
ax_E_plot.tick_params(axis='y', colors='r')
# put zero in the middle of the axis
Ez_abs_max = abs(max(ax_E_plot.get_ylim(), key=abs))
ax_E_plot.set_ylim(ymin=-Ez_abs_max, ymax=Ez_abs_max)
def plot_beam(self,beam_info,plot_number_density,bin_y,axes,vmax):
"""
Plot particles within a beam_info instance; Three features are included:
1. bin_y: can choose to plot particles near y = 0 or the projection of all particles onto the 2D plane.
2.
Parameters
----------
beam_info : TYPE
DESCRIPTION.
plot_number_density : TYPE
DESCRIPTION.
bin_y : TYPE
DESCRIPTION.
axes : TYPE
DESCRIPTION.
Returns
-------
None.
"""
x,y,z = self.ts.get_particle(species = beam_info.beam,iteration = beam_info.iteration, var_list = ['x','y','z'])
cmap = colors.LinearSegmentedColormap.from_list("", ["white","darkorange","brown","darkred","maroon","black"])
# cmap = anothercmap
my_cmap = cmap(np.arange(cmap.N))
# Set alpha
my_cmap[:,-1] = np.linspace(0,1,cmap.N)
# create a new colormap
beam_cmap = ListedColormap(my_cmap)
if not bin_y:
# select particles within the grid near y = 0
select_particles = (y<.5*self.grid_info.dx) & (y>-.5*self.grid_info.dx)
z_in_cell = z[select_particles]
x_in_cell = x[select_particles]
axes.scatter(z_in_cell * 1e6,x_in_cell * 1e6,s = 0.02,c = 'k',alpha = 0.5)
elif plot_number_density:
Z, zedges, xedges= np.histogram2d(z, x, bins=[100,100])
for _1 in range(len(zedges)-1):
for _2 in range(len(xedges)-1):
if Z[_1][_2] <= 30:
Z[_1][_2] = 0
continue
z_lo = zedges[_1]
z_hi = zedges[_1+1]
x_lo = xedges[_2]
x_hi = xedges[_2+1]
dz = np.abs(z_lo - z_hi)
dx = np.abs(x_lo - x_hi)
dy = 3*np.std(y[(x < x_hi)&(x >= x_lo)&(z >= z_lo)&(z < z_hi)])
grid_volume = dx*dy*dz # in m^3
if grid_volume == 0:
Z[_1][_2] = 0
else:
Z[_1][_2] = Z[_1][_2]/len(z) * beam_info.tot_charge * 6.25e18/(grid_volume*1e6) /self.n0
Z = ndimage.gaussian_filter(Z, sigma=1, order=0)
driver = axes.pcolormesh(zedges*1e6, xedges*1e6, Z.T, cmap= beam_cmap, vmin = 0, vmax = vmax)
cb_driver = plt.colorbar(driver, location='top', aspect=50, pad=0.07)
cb_driver.set_label(f'Beam density ({self.n0}'+r" cm$^{-3}$)", labelpad=-42, y=0.45,fontsize = 12)
else:
Z, zedges, xedges= np.histogram2d(z, x, bins=[100,100])
Z = ndimage.gaussian_filter(Z, sigma=1, order=0)
driver = axes.pcolormesh(zedges*1e6, xedges*1e6, Z.T, cmap= beam_cmap, vmin = 0)
class plot_trajectory:
"""
Plot beam parameters' evolution.
Initialization:
beam : get_beam_info object with an arbitrary iteration number.
Attributes:
ts : time series info.
beam : get_beam_info object being initialized.
beam_series : list of get_beam_info objects corresponding to each iteration in time series data.
Functions:
bf_in_sims : plot betafunction evolution within the simulation.
bf_in_vac : plot betafunction propagation in vacuum after the simulation.
vac_profile : plot vacuum propagation of the incoming beam with its initial parameters before entering the plasma.
full_beam_size_evln : beam size (sigma) evolution inside the plasma and propagation in vacuum after exiting the plasma.
E_gain : Energy evolution inside plasma.
emittance : emittance evolution inside plasma.
E_x_plot_info : E-x contour at certain distance from the starting of the simulation.
trace_space : trace space contour at certain distance from the starting of the simulation.
"""
def __init__(self,beam):
self.ts = beam.ts_info
self.beam = beam
self.beam_series = [bi.get_beam_info(self.ts,self.beam.beam,iteration,self.beam.tail_charge,self.beam.tot_charge,self.beam.dt,self.beam.num_bins) for iteration in self.ts.iterations]
def bf_in_sims(self,section,axes,color,linestyle,linewidth,label):
"""
Plot betafunction evolution (unit: both in cm) in the simulations (i.e. within the time series data).
Parameters
----------
section : string
'tail', 'head', or 'entire', corresponding to different part of the beam.
axes : matplotlib.axes
axes for plotting.
color : string
color for plotting.
linestyle : string
linestyle for plotting.
linewidth : float/int
linewidth for plotting.
label : string
plot label.
Returns
-------
x_range : array
x range; unit: cm.
beta_arr : array
betafunction; unit: cm.
"""
x_range = self.ts.iterations * self.beam.dt * 3e8
beta_arr = []
for i in range(len(self.ts.iterations)):
new_beam = self.beam_series[i]
if section == 'tail':
b_x = new_beam.b_x_tail
elif section == 'head':
b_x = new_beam.b_x_head
else:
b_x = new_beam.b_x
beta_arr.append(b_x*1e2)
if axes:
axes.plot(x_range*1e2,beta_arr,c = color,linestyle = linestyle,linewidth = linewidth,label = label)
else:
plt.plot(x_range*1e2,beta_arr,c = color,linestyle = linestyle,linewidth = linewidth,label = label)
return x_range*1e2,beta_arr
def bf_in_vac(self,L,section,axes,color,linestyle,linewidth,label):
"""
Plot betafunction (unit: both in cm) propagation in vacuum after the simulation.
Parameters
----------
x_range : int; unit of cm.
propagation length in vacuum.
section : string
'tail', 'head', or 'entire', corresponding to different part of the beam.
axes : matplotlib.axes
axes for plotting.
color : string
color for plotting.
linestyle : string
linestyle for plotting.
linewidth : float/int
linewidth for plotting.
label : string
plot label.
Returns
-------
x_range : array
x range; unit: cm.
beta_arr: array
betafunction; unit: cm.
"""
last_beam = self.beam_series[-1]
x_range = np.linspace(0,L,num = 10**3)
if section == 'tail':
a,b,g = last_beam.a_x_tail,last_beam.b_x_tail,last_beam.g_x_tail
elif section == 'head':
a,b,g = last_beam.a_x_head,last_beam.b_x_head,last_beam.g_x_head
else:
a,b,g = last_beam.a_x,last_beam.b_x,last_beam.g_x
beta_arr = an.beta_prop(x_range, a, b, g)
if axes:
axes.plot(x_range+last_beam.L*1e2, beta_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
else:
plt.plot(x_range+last_beam.L*1e2, beta_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
return x_range+last_beam.L*1e2,beta_arr
def vac_profile(self,L,section,axes,color,linestyle,linewidth,label):
"""
Vacuum propagation of betafunction without plasma interaction; use the initialized beam profile at iteration 0.
Parameters
----------
L : int; unit of cm.
propagation length in vacuum.
section : string
'tail', 'head', or 'entire', corresponding to different part of the beam.
axes : matplotlib.axes
axes for plotting.
color : string
color for plotting.
linestyle : string
linestyle for plotting.
linewidth : float/int
linewidth for plotting.
label : string
plot label.
"""
first_beam = self.beam_series[0]
x_range = np.linspace(0,L,num = 10**3)
if section == 'tail':
a,b,g = first_beam.a_x_tail,first_beam.b_x_tail,first_beam.g_x_tail
elif section == 'head':
a,b,g = first_beam.a_x_head,first_beam.b_x_head,first_beam.g_x_head
else:
a,b,g = first_beam.a_x,first_beam.b_x,first_beam.g_x
beta_arr = an.beta_prop(x_range, a, b, g)
if axes:
axes.plot(x_range, beta_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
else:
plt.plot(x_range, beta_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
def full_beam_size_evln(self,L,section,axes,color,linestyle,linewidth,label):
"""
Plot full range beam spot size evolution; sigma unit in um.
Parameters
----------
L : int; unit of cm.
propagation length in vacuum.
section : string
choose from "tail", "head", or "entire".
axes : plt.axes
specific axes for plotting; enter None if no axes is used.
color, linestyle, ... :
common plotting settings in matplotlib.pyplot
Returns
-------
x : array
z range; unit: cm.
sig_arr : array
beam size (sigma) array; unit: um.
"""
sig_arr_sims = []
x_range = np.linspace(0,L,num = 10**3)
for i in range(len(self.ts.iterations)):
new_beam = self.beam_series[i]
if section == 'tail':
b_x = new_beam.b_x_tail
e_x = new_beam.geo_emit_x_tail
elif section == 'head':
b_x = new_beam.b_x_head
e_x = new_beam.geo_emit_x_head
else:
b_x = new_beam.b_x
e_x = new_beam.geo_emit_x
sig_arr_sims.append(np.sqrt(b_x*e_x)*1e6)
if section == 'tail':
a,b,g = new_beam.a_x_tail,new_beam.b_x_tail,new_beam.g_x_tail
sig_arr_vac = np.sqrt(an.beta_prop(x_range, a, b, g)*1e-2*new_beam.geo_emit_x_tail)*1e6
elif section == 'head':
a,b,g = new_beam.a_x_head,new_beam.b_x_head,new_beam.g_x_head
sig_arr_vac = np.sqrt(an.beta_prop(x_range, a, b, g)*1e-2*new_beam.geo_emit_x_head)*1e6
else:
a,b,g = new_beam.a_x,new_beam.b_x,new_beam.g_x
sig_arr_vac = np.sqrt(an.beta_prop(x_range, a, b, g)*1e-2*new_beam.geo_emit_x)*1e6
sig_arr = np.concatenate((sig_arr_sims,sig_arr_vac))
x = np.concatenate((self.ts.iterations * self.beam.dt * 3e10, x_range + new_beam.L*1e2))
if axes:
axes.plot(x, sig_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
else:
plt.plot(x, sig_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
return x, sig_arr
def E_gain(self,section,axes,color,linestyle,linewidth,label):
"""
Plot energy evolution within plasma
Parameters
----------
section : string
'tail', 'head', or 'entire', corresponding to different part of the beam.
axes : matplotlib.axes
axes for plotting.
color : string
color for plotting.
linestyle : string
linestyle for plotting.
linewidth : float/int
linewidth for plotting.
label : string
plot label.
Returns
-------
None.
"""
x_range = self.ts.iterations * self.beam.dt * 3e8
if section == 'tail':
E_arr = np.array([np.mean(beam.E_tail) for beam in self.beam_series])
elif section == 'head':
E_arr = np.array([np.mean(beam.E_head) for beam in self.beam_series])
else:
E_arr = np.array([np.mean(beam.E) for beam in self.beam_series])
if axes:
axes.plot(x_range*1e2, E_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
else:
plt.plot(x_range*1e2, E_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
def emittance(self,section,axes,color,linestyle,linewidth,label):
"""
Plot emittance evolution within the plasma
Parameters
----------
section : string
'tail', 'head', or 'entire', corresponding to different part of the beam.
axes : matplotlib.axes
axes for plotting.
color : string
color for plotting.
linestyle : string
linestyle for plotting.
linewidth : float/int
linewidth for plotting.
label : string
plot label.
Returns
-------
None.
"""
x_range = self.ts.iterations * self.beam.dt * 3e8
if section == 'tail':
emit_arr = np.array([beam.norm_emit_x_tail for beam in self.beam_series])/self.beam_series[0].norm_emit_x_tail
elif section == 'head':
emit_arr = np.array([beam.norm_emit_x_head for beam in self.beam_series])/self.beam_series[0].norm_emit_x_head
else:
emit_arr = np.array([beam.norm_emit_x for beam in self.beam_series])/self.beam_series[0].norm_emit_x
if axes:
axes.plot(x_range*1e2, emit_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
else:
plt.plot(x_range*1e2, emit_arr, c = color, linestyle = linestyle, linewidth = linewidth, label = label)
def E_x_plot_info(self,L,detect_threshold,axes):
"""
Parameters
----------
L : float
distance from the start of the simulation; SI unit (m).
detect_threshold : float/int
detection threshold of the spectrometer.
axes : matplotlib.axis
axes for plotting.
Returns
-------
H : array
2D histogram with first dimension (row) being x; and second dimension (column) being E.
xedges : array
x array; unit: um.
yedges : array
E array; unit: GeV.
"""
if L <= self.ts.iterations[-1] * self.beam.dt * 3e8:
abs_diff = np.abs(self.ts.iterations * self.beam.dt * 3e8 - L)
min_index = np.argmin(abs_diff)
x,pz = self.ts.get_particle(species = self.beam.beam,iteration = self.ts.iterations[min_index], var_list =['x','uz'])
E = an.P_to_E(pz)
H, xedges, yedges = np.histogram2d(x, E, bins=[200,200])
else:
x,px,pz = self.ts.get_particle(species = self.beam.beam,iteration = self.ts.iterations[-1], var_list =['x','ux','uz'])
x_p = px/pz
x_f = x + (L - self.ts.iterations[-1] * self.beam.dt * 3e8)*x_p
E_f = an.P_to_E(pz)
H, xedges, yedges = np.histogram2d(x_f, E_f, bins=[200,200])
if detect_threshold:
H[H < detect_threshold] = 0
if axes:
beam_f = axes.pcolormesh(xedges*1e6, yedges, H.T, cmap='magma')
#cb_beam1 = plt.colorbar(beam_f,ax = axes, location='right', aspect=50, pad=0.05,label = 'Beam density')
else:
beam_f = plt.pcolormesh(xedges*1e6, yedges, H.T, cmap='magma')
#cb_beam1 = plt.colorbar(beam_f,ax = axes, location='right', aspect=50, pad=0.05,label = 'Beam density')
return H, xedges, yedges
def trace_space(self,L):
"""
Parameters
----------
L : float
distance from the start of the simulation; SI unit (m).
Returns
-------
x : array
x array; unit: meter.
x_p : array
x prime array; unit: rad.
pz : array
normalized momentum array.
"""
if L <= self.ts.iterations[-1] * self.beam.dt * 3e8:
abs_diff = np.abs(self.ts.iterations * self.beam.dt * 3e8 - L)
min_index = np.argmin(abs_diff)
x,px,pz = self.ts.get_particle(species = self.beam.beam,iteration = self.ts.iterations[min_index], var_list =['x','ux','uz'])
x_p = px/pz
else:
x,px,pz = self.ts.get_particle(species = self.beam.beam,iteration = self.ts.iterations[-1], var_list =['x','ux','uz'])
x_p = px/pz
x += (L - self.ts.iterations[-1] * self.beam.dt * 3e8)*x_p
return x,x_p,pz