-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfine_tuning.py
195 lines (163 loc) · 6.43 KB
/
fine_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
r'''
____ ____ _ ____ _____ _ _
| _ \ / ___| / \ / ___|| ____| _ __ ___ ___ __| | ___| |___
| | | | | / _ \ \___ \| _| _____| '_ ` _ \ / _ \ / _` |/ _ \ / __|
| |_| | |___ / ___ \ ___) | |__|_____| | | | | | (_) | (_| | __/ \__ \\
|____/ \____/_/ \_\____/|_____| |_| |_| |_|\___/ \__,_|\___|_|___/
Model fine-tuning example
'''
import os
import argparse
from dcase_models.data.datasets import get_available_datasets
from dcase_models.data.features import get_available_features
from dcase_models.model.models import get_available_models
from dcase_models.data.data_generator import DataGenerator
from dcase_models.data.scaler import Scaler
from dcase_models.util.files import load_json
from dcase_models.util.files import mkdir_if_not_exists, save_pickle
from dcase_models.util.data import evaluation_setup
sed_datasets = ['URBAN_SED', 'TUTSoundEvents2017', 'MAVD']
def main():
# Parse arguments
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument(
'-od', '--origin_dataset', type=str,
help='dataset name (e.g. UrbanSound8k, ESC50, URBAN_SED, SONYC_UST)',
default='UrbanSound8k'
)
parser.add_argument(
'-ofold', '--origin_fold_name', type=str,
help='origin fold name',
default='fold1')
parser.add_argument(
'-d', '--dataset', type=str,
help='dataset name (e.g. UrbanSound8k, ESC50, URBAN_SED, SONYC_UST)',
default='ESC50'
)
parser.add_argument(
'-fold', '--fold_name', type=str,
help='destination fold name',
default='fold1')
parser.add_argument(
'-f', '--features', type=str,
help='features name (e.g. Spectrogram, MelSpectrogram, Openl3)',
default='MelSpectrogram'
)
parser.add_argument(
'-p', '--path', type=str,
help='path to the parameters.json file',
default='../'
)
parser.add_argument(
'-m', '--model', type=str,
help='model name (e.g. MLP, SB_CNN, SB_CNN_SED, A_CRNN, VGGish)',
default='SB_CNN')
parser.add_argument(
'-s', '--models_path', type=str,
help='path to save the trained model',
default='../trained_models'
)
args = parser.parse_args()
print(__doc__)
if args.dataset not in get_available_datasets():
raise AttributeError('Dataset not available')
if args.features not in get_available_features():
raise AttributeError('Features not available')
if args.model not in get_available_models():
raise AttributeError('Model not available')
# Get parameters
parameters_file = os.path.join(args.path, 'parameters.json')
params = load_json(parameters_file)
params_dataset = params['datasets'][args.dataset]
params_features = params['features']
params_model = params['models'][args.model]
# Load origin model
model_path_origin = os.path.join(args.models_path, args.model,
args.origin_dataset)
model_class = get_available_models()[args.model]
metrics = ['accuracy']
if args.dataset in sed_datasets:
metrics = ['sed']
model_container = model_class(
model=None, model_path=model_path_origin,
metrics=metrics
)
model_container.load_model_weights(
os.path.join(model_path_origin, args.origin_fold_name))
kwargs = {}
if args.dataset in sed_datasets:
kwargs = {'sequence_hop_time': params_features['sequence_hop_time']}
# Get and init dataset class
dataset_class = get_available_datasets()[args.dataset]
dataset_path = os.path.join(args.path, params_dataset['dataset_path'])
dataset = dataset_class(dataset_path, **kwargs)
if args.fold_name not in dataset.fold_list:
raise AttributeError('Fold not available')
# Get and init feature class
features_class = get_available_features()[args.features]
features = features_class(
sequence_time=params_features['sequence_time'],
sequence_hop_time=params_features['sequence_hop_time'],
audio_win=params_features['audio_win'],
audio_hop=params_features['audio_hop'],
sr=params_features['sr'], **params_features[args.features]
)
print('Features shape: ', features.get_shape())
# Check if features were extracted
if not features.check_if_extracted(dataset):
print('Extracting features ...')
features.extract(dataset)
print('Done!')
use_validate_set = True
if args.dataset in ['TUTSoundEvents2017', 'ESC50', 'ESC10']:
# When have less data, don't use validation set.
use_validate_set = False
folds_train, folds_val, _ = evaluation_setup(
args.fold_name, dataset.fold_list,
params_dataset['evaluation_mode'],
use_validate_set=use_validate_set
)
data_gen_train = DataGenerator(
dataset, features, folds=folds_train,
batch_size=params['train']['batch_size'],
shuffle=True, train=True, scaler=None
)
scaler = Scaler(normalizer=params_model['normalizer'])
print('Fitting features ...')
scaler.fit(data_gen_train)
print('Done!')
data_gen_train.set_scaler(scaler)
data_gen_val = DataGenerator(
dataset, features, folds=folds_val,
batch_size=params['train']['batch_size'],
shuffle=False, train=False, scaler=scaler
)
# Fine-tune model
n_classes = len(dataset.label_list)
layer_where_to_cut = -2
model_container.fine_tuning(layer_where_to_cut,
new_number_of_classes=n_classes,
new_activation='sigmoid',
freeze_source_model=True)
model_container.model.summary()
# Set paths
model_folder = os.path.join(
args.models_path, args.model,
args.origin_dataset+'_ft_'+args.dataset)
exp_folder = os.path.join(model_folder, args.fold_name)
mkdir_if_not_exists(exp_folder, parents=True)
# Save model json and scaler
model_container.save_model_json(model_folder)
save_pickle(scaler, os.path.join(exp_folder, 'scaler.pickle'))
# Train model
model_container.train(
data_gen_train, data_gen_val,
label_list=dataset.label_list,
weights_path=exp_folder,
sequence_time_sec=params_features['sequence_hop_time'],
**params['train'])
if __name__ == "__main__":
main()