-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathtrain.py
208 lines (156 loc) · 7.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# -*- coding:utf-8 -*-
import os
import apex
import time
import random
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
from apex import amp
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data.sampler import RandomSampler
from torch.utils.data import DataLoader, SequentialSampler
from torch.optim.lr_scheduler import CosineAnnealingLR
from qdnet.conf.config import load_yaml
from qdnet.optimizer.optimizer import GradualWarmupSchedulerV2
from qdnet.dataset.dataset import get_df, QDDataset
from qdnet.dataaug.dataaug import get_transforms
from qdnet.models.effnet import Effnet
from qdnet.models.resnest import Resnest
from qdnet.models.se_resnext import SeResnext
from qdnet.loss.loss import Loss
from qdnet.conf.constant import Constant
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--config_path', help='config file path')
args = parser.parse_args()
config = load_yaml(args.config_path, args)
def set_seed(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def train_epoch(model, loader, optimizer):
model.train()
train_loss = []
bar = tqdm(loader)
for (data, target) in bar:
optimizer.zero_grad()
data, target = data.to(device), target.to(device)
loss = Loss(out_dim=int(config["out_dim"]), loss_type=config["loss_type"])(model, data, target, mixup_cutmix=config["mixup_cutmix"])
if not config["use_amp"]:
loss.backward()
else:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if int(config["image_size"]) in [896,576]:
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
loss_np = loss.detach().cpu().numpy()
train_loss.append(loss_np)
smooth_loss = sum(train_loss[-100:]) / min(len(train_loss), 100)
bar.set_description('loss: %.5f, smth: %.5f' % (loss_np, smooth_loss))
train_loss = np.mean(train_loss)
return train_loss
def val_epoch(model, loader, mel_idx, get_output=False):
model.eval()
val_loss = []
LOGITS = []
PROBS = []
TARGETS = []
with torch.no_grad():
for (data, target) in tqdm(loader):
data, target = data.to(device), target.to(device)
logits = torch.zeros((data.shape[0], int(config["out_dim"]))).to(device)
# probs = torch.zeros((data.shape[0], int(config["out_dim"]))).to(device)
probs = model(data)
LOGITS.append(logits.detach().cpu())
PROBS.append(probs.detach().cpu())
TARGETS.append(target.detach().cpu())
loss = Loss(out_dim=int(config["out_dim"]), loss_type=config["loss_type"])(model, data, target, mixup_cutmix=False)
val_loss.append(loss.detach().cpu().numpy())
val_loss = np.mean(val_loss)
LOGITS = torch.cat(LOGITS).numpy()
PROBS = torch.cat(PROBS).numpy()
TARGETS = torch.cat(TARGETS).numpy()
if get_output:
return LOGITS, PROBS
else:
acc = (PROBS.argmax(1) == TARGETS).mean()
auc = roc_auc_score((TARGETS == mel_idx).astype(float), PROBS[:, mel_idx])
return val_loss, acc, auc
def run(fold, df, transforms_train, transforms_val, mel_idx):
df_train = df[df['fold'] != fold]
df_valid = df[df['fold'] == fold]
dataset_train = QDDataset(df_train, 'train', transform=transforms_train)
dataset_valid = QDDataset(df_valid, 'valid', transform=transforms_val)
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=int(config["batch_size"]), sampler=RandomSampler(dataset_train), num_workers=int(config["num_workers"]))
valid_loader = torch.utils.data.DataLoader(dataset_valid, batch_size=int(config["batch_size"]), num_workers=int(config["num_workers"]))
model = ModelClass(
enet_type = config["enet_type"],
out_dim = int(config["out_dim"]),
drop_nums = int(config["drop_nums"]),
pretrained = config["pretrained"],
metric_strategy = config["metric_strategy"]
)
if DP:
model = apex.parallel.convert_syncbn_model(model)
model = model.to(device)
auc_max = 0.
model_file = os.path.join(config["model_dir"], f'best_fold{fold}.pth')
model_file3 = os.path.join(config["model_dir"], f'final_fold{fold}.pth')
optimizer = optim.Adam(model.parameters(), lr=float(config["init_lr"]))
if config["use_amp"]:
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")
if DP:
model = nn.DataParallel(model)
#scheduler_cosine = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, int(config["n_epochs"]) - 1)
scheduler_cosine = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, int(config["n_epochs"]) - 1)
scheduler_warmup = GradualWarmupSchedulerV2(optimizer, multiplier=10, total_epoch=1, after_scheduler=scheduler_cosine)
print(len(dataset_train), len(dataset_valid))
for epoch in range(1, int(config["n_epochs"]) + 1):
print(time.ctime(), f'Fold {fold}, Epoch {epoch}')
train_loss = train_epoch(model, train_loader, optimizer)
val_loss, acc, auc = val_epoch(model, valid_loader, mel_idx)
content = time.ctime() + ' ' + f'Fold {fold}, Epoch {epoch}, lr: {optimizer.param_groups[0]["lr"]:.7f}, train loss: {train_loss:.5f}, valid loss: {(val_loss):.5f}, acc: {(acc):.4f}, auc: {(auc):.6f}.'
print(content)
with open(os.path.join(config["log_dir"], f'log.txt'), 'a') as appender:
appender.write(content + '\n')
scheduler_warmup.step()
if epoch==2: scheduler_warmup.step()
if auc > auc_max:
print('auc_max ({:.6f} --> {:.6f}). Saving model ...'.format(auc_max, auc))
torch.save(model.state_dict(), model_file)
auc_max = auc
torch.save(model.state_dict(), model_file3)
def main():
df, df_test, mel_idx = get_df( config["data_dir"], config["auc_index"] )
transforms_train, transforms_val = get_transforms(config["image_size"])
folds = [int(i) for i in config["fold"].split(',')]
for fold in folds:
run(fold, df, transforms_train, transforms_val, mel_idx)
if __name__ == '__main__':
os.makedirs(config["model_dir"], exist_ok=True)
os.makedirs(config["log_dir"], exist_ok=True)
os.environ['CUDA_VISIBLE_DEVICES'] = config["CUDA_VISIBLE_DEVICES"]
if config["enet_type"] in Constant.RESNEST_LIST:
ModelClass = Resnest
elif config["enet_type"] in Constant.SERESNEXT_LIST:
ModelClass = SeResnext
elif config["enet_type"] in Constant.GEFFNET_LIST:
ModelClass = Effnet
else:
raise NotImplementedError()
DP = len(os.environ['CUDA_VISIBLE_DEVICES']) > 1
set_seed()
device = torch.device('cuda')
criterion = nn.CrossEntropyLoss()
main()