Skip to content

Consistent Hashing based Key-Value Memory Storage

Notifications You must be signed in to change notification settings

MageekChiu/CHKV

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Consistent Hashing based Key-Value Memory Storage

基于一致性哈希的分布式内存键值存储——CHKV。 目前的定位就是作为 CacheDataBase 的功能先不考虑。

系统设计

  • NameNode : 维护 DataNode节点 列表,用心跳检测 DataNode(一般被动,被动失效时主动询问三次),节点增减等系统信息变化时调整数据并通知 Client
  • DataNode : 存储具体的数据,向 NameNode 主动发起心跳并采用请求响应的方式来实现上下线,便于 NameNode 发起挪动数据指令,实际挪动操作由 DataNode 自行完成;
  • Client : 负责向 NameNode 请求 DataNode 相关信息并监听其变化,操纵数据时直接向对应 DataNode 发起请求就行, 目前支持set,setnx,get,delete,keys,expire,incr,incrby,decr,decrby,append几个操作;

NameNode 失效则整个系统不可用。

若当成内存数据库使用,则要注意持久化,而且只要有一个 DataNode 失效(未经请求与数据转移就下线了)整个系统就不可对外服务; 若当成内存缓存使用,则 DataNode 失效只是失去了一部分缓存,系统仍然可用。

DataNode 失效(未经请求与数据转移就断开了和 NameNode 的连接)则 NameNode 需要及时通知 Client

客户 要使用 CHKV 就必须使用 Client 库或者自己依据协议(兼容redis)实现,可以是多种语言的API。 当然也可以把 Client 当做 Proxy,使得 CHKV 内部结构对 客户 透明,亦即有如下两种方式:

方式1:

      用户直接使用Client库
              ||
        ||          ||
    ||                      ||
NameNode        ||      ||      ||      ||
            DataNode DataNode DataNode DataNode ......  

方式2:

         用户通过Proxy访问    
              ||  
         Client库构建的Proxy
              ||
        ||          ||
    ||                      ||
NameNode        ||      ||      ||      ||
            DataNode DataNode DataNode DataNode ......            

可用性分析

高可用分析

要想实现高可用有两点: NameNode 要主从双机备,避免单点失效; 每个 DataNode 可以做成主从复制甚至集群。

目前实现了NameNode多机热备的高可用,如下图:

                  Client
                    ||
              ||           ||
         ||                            ||
     ||      ||            ||      ||      ||      ||
 NameNode0  NameNode1    DataNode DataNode DataNode DataNode ......  

默认情况下 ClientDataNode 都与 MasterNameNode0 保持连接,NameNode1 作为 Standby。 一旦 NameNode0 不可用,ClientDataNode 都能收到消息并开始和 NameNode1 建立连接。 高可用依赖于第三方组件如ZooKeeper、Redis等,用户可以根据需要自行选择, 只需要基于特定第三方组件实现 cn.mageek.common.ha.HAThirdParty 抽象类即可,如本项目提供的例子 cn.mageek.common.ha.ZKThirdParty

DataNode 由于需要IP入环,所以其本身高可用建议使用主从复制(代码本身实现,暂时采用全量复制)和IP漂移Keepalived 实现),可以参考该文章

所以数据总共有两种状态需要迁移,一种是**DataNode**节点上下线,一种是**DataNode**节点主从复制。 对于**主从复制迁移**由于目前采取的是定时全量复制,所以是不一致的,这个要做改进,可以强行每次请求同步到从节点。 **节点之间迁移**的一致性策略还是可以配置的: - 如果是强一致 CP,那么在迁移状态就可以简单的不接受修改;也可以优化为不接受迁移数据的修改,但是代码更复杂 - 如果是弱一致 AP,那么迁移过程就要划分状态了: - 下线迁移中,不接受修改 - 上一个节点上线迁移中,不接受修改

目前简单的采取迁移过程中不接受修改。

连接分析

各个组件之间的连接情况:

  • NameNode 要保持和 NClient 的TCP长连接,但是只有在集群发生变化时才有交互,所以使用IO多路复用负载就不大
  • NameNode 要和 MDataNode 保持心跳,TCP请求响应式,负载与 M 和心跳间隔秒数 interval 有关
  • DataNodeClient 是TCP请求响应式操作,Client 请求完毕后保留与该 DataNode TCP连接一段时间,以备后续访问复用连接,连接采取自动过期策略,类似于LRU
  • DataNodeNameNode 保持心跳 Heartbeat
  • ClientNameNode 保持TCP长连接,Watch DataNode 的变化
  • ClientDataNode TCP请求响应式操作,Data 的请求响应

如下图所示,有4个连接:其中1、2要主动心跳来保持连接;3保持连接以备复用并可以自动超时断开,再次使用时重连;4完成数据转移后就断开连接。

                     NameNode
                   ||       ||     
  1、心跳请求响应||              ||2、监听长连接 
             ||   3、数据请求响应   ||     
          DataNodes  ==========  Clients
           ||    ||
              ||
      4、数据转移,可复用3  

开发优先级:3、1、4、2

代码结构

  • NameNode : 实现 NameNode 功能

    • handler : handler
    • res : 资源,如常量,命令工厂
    • service : 服务,含Client管理,DataNode管理
  • DataNode : 实现 DataNode 功能

    • command : 处理客户端各个命令的具体命令对象
    • job : 一些的任务如心跳、数据迁移
    • handler : 处理连接的handler
    • service : 服务,含定时任务管理,数据请求管理
  • Client : 实现 Client 功能

    • handler : handler
    • Client : 暴露给用户的命令管理
    • Connection : 发出网络请求
  • Common : 实现一些公共的功能,上面三个模块依赖于此模块

    • command : 命令抽象类
    • ha : HA相关类
    • model : 一些公用的pojo,如请求响应对象
    • util : 一些工具类
    • helper : 辅助脚本

使用方法

DataNode 运行起来就可以直接使用 redis-cli 连接,如redis-cli -h 127.0.0.1 -p 10100,并进行set、get、del等操作;

注意:要首先运行 NameNode,然后可以通过JVM参数的方式调整端口,在同一台机器上运行多个 DataNode, 若要在不同机器上运行 DataNode 也可以直接修改配置文件。

新的 DataNode 可以直接上线,NameNode 会自动通知下一个节点转移相应数据给新节点;DataNode 若要下线, 则可以通过 telnet DataNode 节点的下线监听端口(TCP监听) 如 telnet 127.0.0.1 20000 , 并发送 k 字符即可,待下线的DataNode收到命令 k 后会自动把数据全部转移给下一个 DataNode 然后提示进程pid,用户就可以关闭该DataNode进程了,如 Linuxkill -s 9 23456Windows:taskkill /pid 23456

DataNode 支持Expire,包含lazy与periodical两种删除策略,默认lazy,expireChecking大于0就是periodical+lazy

NameNodeDataNode 启动后就可以使用 Client 了,代码示例如下:

Client 代码示例在此,关键如下:

    try(Client client = new Client("192.168.0.136","10102")){// 支持自动关闭
        logger.debug(client.set("192.168.0.136:10099","123456")+"");
        logger.debug(client.get("192.168.0.136:10099")+"");
        logger.debug(client.set("112","23")+"");
        logger.debug(client.del("1321")+"");
        logger.debug(client.del("112")+"");
    }

压力测试

在本机开启1个 NameNode 和1个 DataNode 直接压测,4次

redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -q

  • SET: 5006.76 requests per second
  • SET: 5056.43 requests per second
  • SET: 5063.55 requests per second
  • SET: 5123.74.55 requests per second

把以上2个节点日志级别都调整为 info(实际上 DataNode 节点才会影响 qps),重启

redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -q

  • SET: 62421.97 requests per second
  • SET: 87260.03 requests per second
  • SET: 92592.59 requests per second
  • SET: 94517.96 requests per second

可见日志对qps影响很大,是 几k几十k 的不同数量级的概念,若把级别改成 error平均qps还能提升 几k,所以生产环境一定要注意日志级别。

此外观察,不重启并且每次压测间隔都很小的话,qps一般会从 65k 附近开始,经过1、2次的 88k 左右,最终稳定在 98k 附近,数十次测试,最低 62.4k,最高101.2k

重启的话,qps就会重复上述变化过程,这应该是和内存分配等初始化工作有关,第1次压测有大量的初始化,而后面就没了,所以第一次qps都比较低;还可能与 JIT 有关,所以 Java 的性能测试严格上来说要忽略掉最初的几个样本才对。

经观察,DataNode进程启动后,内存消耗在59M附近,第1次压测飙升到134M然后稳定到112M,第2次上升到133M然后稳定到116M,后面每次压测内存都是先增加几M然后减小更多,最终稳定在76M。

在本机运行一个redis-server进程,然后压测一下

redis-benchmark -h 127.0.0.1 -p 6379 -c 100 -t set -q

  • SET: 129032.27 requests per second
  • SET: 124533.27 requests per second
  • SET: 130208.34 requests per second
  • SET: 132450.33 requests per second

经数十次测试,qps 稳定在 128k 附近,最高 132.3k ,最低 122.7k 可见CHKV的单个 DataNode 目前性能还比不过单个 redis

DataNode 经过重构后,现在的压测结果如下

redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -q

  • SET: 78554.59 requests per second
  • SET: 114285.71 requests per second
  • SET: 119047.63 requests per second
  • SET: 123628.14 requests per second

经过多次测试,qps 稳定在 125k 附近,最高 131.9k ,最低 78.6k(这是启动后第一次压测的特例,后期稳定时最低是 114.3k),可见重构后 单个 DataNode 和单个 redis-serverqps 差距已经很小了,优化效果还是比较明显的。

主要优化两个:去掉单独的 BusinessHandler 的单独逻辑线程,因为没有耗时操作,直接在IO线程操作反而能省掉切换时间; DataNode 通过 public static volatile Map<String,String> DATA_POOL 共享数据池,其他相关操作类减少了这个域,省一些内存; 第一条对比明显,很容易直接测试,第二条没直接测,只是分析。

然后通过 -Xint 或者 -Djava.compiler=NONE 关闭 JIT 使用 解释模式,再压测试试。

redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -q

  • SET: 16105.65 requests per second
  • SET: 16244.31 requests per second
  • SET: 16183.85 requests per second
  • SET: 16170.76 requests per second

可见关闭 JITqps 降低了 7倍多,而且每次差别不大(即使是第一次),这也能说明上面(默认是混合模式)第一次压测的 qps 比后面低了那么多的原因确实和 JIT 有关。

通过 -Xcomp 使用 编译模式 ,启动会很慢。

redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -q

  • SET: 83612.04 requests per second
  • SET: 117647.05 requests per second
  • SET: 121802.68 requests per second
  • SET: 120048.02 requests per second

可见 编译模式 并没有比 混合模式 效果好,因为即使是不热点的代码也要编译,反而浪费时间,所以一般还是选择默认的 混合模式 较好。

然后来验证线程数、客户端操作qps 的关系,实验机器是 4 core、8 processor,我把 DataNodeDataManagerworkerGroup的线程数依次减少从 8 调到为 1 (之前的测试都是 4 ), 发现 qps 先升后降,在值为 2 的时候达到最大值,超过了redis,下面是数据

redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -q

  • SET: 93283.04 requests per second
  • SET: 141043.05 requests per second
  • SET: 145560.68 requests per second
  • SET: 145384.02 requests per second

经数十次测试,qps 稳定在 142k 附近,最高 150.6k ,稳定后最低 137.2kNetty 本身使用了IO多路复用,在客户端操作都比较轻量(压测这个 set 也确实比较轻量)时选择线程数较少是合理的, 因为这时候线程切换的代价超过了多线程带来的好处,这样我们也能理解 redis 单线程设计的初衷了, 单线程虽然有些极端,但是如果考虑 面向快速轻量操作的客户端单线程的安全与简洁特性,也是最佳的选择。

但是如果客户端操作不是轻量级的,比如我们把 set 数据大小调为500bytes,再对 CKHV 不同的 workerGroup线程数进行压测

2 redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -d 500 -q

  • SET: 80450.52 requests per second
  • SET: 102459.02 requests per second
  • SET: 108813.92 requests per second
  • SET: 99206.34 requests per second

3 redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -d 500 -q

  • SET: 92592.59 requests per second
  • SET: 133868.81 requests per second
  • SET: 133868.81 requests per second
  • SET: 135685.22 requests per second

4 redis-benchmark -h 127.0.0.1 -p 10100 -c 100 -t set -d 500 -q

  • SET: 72046.11 requests per second
  • SET: 106723.59 requests per second
  • SET: 114810.56 requests per second
  • SET: 119047.63 requests per second

可见这个时候4、3个线程qps都大于2个线程,符合验证,但是4的qps又比3少,说明线程太多反而不好, 然而把数据大小调到900byte时,4个线程又比3个线程的qps大了, 所以这个参数真的要针对不同的应用场景做出不同的调整,总结起来就是轻量快速的操作适宜线程 适当少,重量慢速操作适宜线程 适当多DataNode 中的 workThread 配置参数决定了IO线程数

未来工作

水平有限,目前项目的问题还很多,可以改进的地方还很多,先列个清单:

  • 高可用性保证
  • 断线重连
  • DataNode迁移数据的正确性保障
  • DataNode迁移数据过程的一致性保障
  • DataNode迁移数据后清理空间节约内存
  • 键空间通知事件,初步设计NameNode下发待监控的keys,DataNode在心跳中上报对应keys的事件,由NameNode下发给client,可以复用已有连接
  • 对于WeakReference的支持
  • 更多数据类型
  • 更多操作
  • 完整的校验机制
  • 等等......

全部代码在Github上,欢迎 star,欢迎 issue,欢迎 fork,欢迎 pull request...... 总之就是欢迎大家和我一起完善这个项目,一起进步。

戳此看原文,来自MageekChiu

About

Consistent Hashing based Key-Value Memory Storage

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published