forked from wjallen/babble-etl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata-cleaning-script.py
550 lines (431 loc) · 20.8 KB
/
data-cleaning-script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import argparse
import csv
import json
import logging
from collections import Counter
import matplotlib.pyplot as plt
import pandas as pd
k=6
def apply_column_transformation(df, column, transformation_name):
"""
Applies the specified transformation to the given column in the DataFrame.
Parameters:
df (pandas.DataFrame): The input DataFrame.
column (str): The name of the column to transform.
transformation_name (str): The name of the transformation to apply.
Returns:
pandas.DataFrame: The DataFrame with the column transformed.
"""
logging.info(f'Applying {transformation_name} transformation to column {column}')
transformations = {
"strip": lambda x: x.str.strip(),
"to_datetime": lambda x: pd.to_datetime(x)
}
transformation = transformations.get(transformation_name, None)
if transformation:
df[column] = transformation(df[column])
return df
def clean_and_transform_data(config_file: str, basename: str):
"""
Cleans and transforms the input data file based on the provided configuration.
Parameters:
config_file (str): Path to the JSON configuration file.
Returns:
pandas.DataFrame: The cleaned and transformed DataFrame.
"""
with open(config_file, "r") as f:
config = json.load(f)
logging.info('Loading data from CSV')
df = pd.read_csv(config["data_file"], low_memory=False)
logging.info('Starting to clean data')
logging.info('Selecting specified columns')
df = df[config["columns"]]
logging.info('Applying custom transformations')
for column, transformation in config["transformations"].items():
df = apply_column_transformation(df, column, transformation)
# logging.info('Filling missing values')
# df = df.fillna(config["fill_na"])
logging.info('Renaming columns')
df = df.rename(columns=config["rename_columns"])
# logging.info('Casting columns to specified data types')
# for column, dtype in config["data_types"].items():
# df[column] = df[column].astype(dtype)
logging.info('Starting to format previously cleaned data')
logging.info('Grouping data by Bout ID and aggregating Babbles into lists')
df = df.groupby("Bout ID", as_index=False).agg({
**{col: "first" for col in df.columns if col not in ["Bout ID", "Babbles"]},
"Babbles": list
})
logging.info('Writing clean and transformed data to csv file')
df.to_csv(basename + '_clean.csv', encoding='utf-8', index=False)
return(df)
def dump_bouts(df_clean: pd.DataFrame, minlength: int, dump: bool):
"""
Dump individual bouts from a DataFrame that meet a minimum length requirement.
Parameters:
df_clean (pd.DataFrame): The input DataFrame.
minlength (int): The minimum length requirement for a bout to be dumped.
dump (bool): Whether to actually dump the bouts or not.
Returns:
int: The number of bouts that were greater than or equal to the minimum length.
"""
logging.info('Starting to dump individual bouts (Babbles)')
bout_list = df_clean[df_clean['Babbles'].str.len() >= minlength]
count = len(bout_list)
if dump:
for i, row in bout_list.iterrows():
logging.info('Dumping a bout')
row.to_csv(f'dump_{i+1}_clean.csv', encoding='utf-8', index=False)
logging.info(f'{count} bouts were greater than or equal to {minlength} signals')
return count
def analysis_singles(df_clean: pd.DataFrame, minlength: int, basename: str):
singles = count_singles(df_clean, minlength)
with open(basename + '_singles.json', 'w') as o:
json.dump(singles, o, indent=2)
with open(basename + '_singles.csv', 'w') as o:
writer = csv.writer(o)
writer.writerow(['signal', 'freq'])
for item in singles.keys():
writer.writerow([item, singles[item]])
logging.info('Single sequence analysis complete')
plot_singles(singles, basename, df_clean)
return
def analysis_pairs(df_clean: pd.DataFrame, minlength: int, basename: str):
# Analyze and save pairs signal sequences that meet minimum length requirement.
pairs = count_pairs(df_clean, minlength)
with open(basename + '_pairs.json', 'w') as o:
json.dump(pairs, o, indent=2)
with open(basename + '_pairs.csv', 'w') as o:
writer = csv.writer(o)
writer.writerow(['signal1', 'signal2', 'freq'])
for itema in pairs.keys():
for itemb in pairs[itema].keys():
# writing signal as '1', '2', etc, instead of 'a1', 'b2', etc
writer.writerow([itema[1:], itemb[1:], pairs[itema][itemb]])
logging.info('Pair sequence analysis complete')
plot_pairs(pairs, basename, df_clean)
return
def analysis_triples(df_clean: pd.DataFrame, minlength: int, basename: str):
if minlength < 3:
minlength = 3
logging.info('Setting minlength to 3 for triples analysis')
triples = count_triples(df_clean, minlength)
with open(basename + '_triples.json', 'w') as o:
json.dump(triples, o, indent=2)
with open(basename + '_triples.csv', 'w') as o:
writer = csv.writer(o)
writer.writerow(['signal1', 'signal2', 'signal3', 'freq'])
for itema in triples.keys():
for itemb in triples[itema].keys():
for itemc in triples[itema][itemb].keys():
writer.writerow([itema[1:], itemb[1:], itemc[1:], triples[itema][itemb][itemc]])
logging.info('Triple sequence analysis complete')
# First row of csv output is header, then contains Nx (NxN blocks)
# So in the case of 39 signals, Rows 2-40 of output correspond to
# all bouts that start with signal 1, then is 39x39 matrix of second
# and third signal. First look left for second signal, then go down
# for third signal. Rows 41-79 would be the second 'block' - all
# bouts that start with signal 2, etc.
return
def analysis_quads(df_clean: pd.DataFrame, minlength: int, basename: str):
if minlength < 4:
minlength = 4
logging.info('Setting minlength to 4 for quads analysis')
quads = count_quads(df_clean, minlength)
with open(basename + '_quads.json', 'w') as o:
json.dump(quads, o, indent=2)
with open(basename + '_quads.csv', 'w') as o:
writer = csv.writer(o)
writer.writerow(['signal1', 'signal2', 'signal3', 'signal4', 'freq'])
for a in quads.keys():
for b in quads[a].keys():
for c in quads[a][b].keys():
for d in quads[a][b][c].keys():
writer.writerow([a[1:], b[1:], c[1:], d[1:], quads[a][b][c][d]])
return
def analysis_quints(df_clean: pd.DataFrame, minlength: int, basename: str):
if minlength < 5:
minlength = 5
logging.info('setting minlength to 5 for quints analysis')
quints = count_quints(df_clean, minlength)
with open(basename + '_quints.json', 'w') as o:
json.dump(quints, o, indent=2)
with open(basename + '_quints.csv', 'w') as o:
writer = csv.writer(o)
writer.writerow(['signal1', 'signal2', 'signal3', 'signal4', 'signal5', 'freq'])
for a in quints.keys():
for b in quints[a].keys():
for c in quints[a][b].keys():
for d in quints[a][b][c].keys():
for e in quints[a][b][c][d].keys():
writer.writerow([a[1:], b[1:], c[1:], d[1:], e[1:], quints[a][b][c][d][e]])
return
def count_singles(df_clean: pd.DataFrame, minlength: int) -> dict:
"""
Count the frequency of single signals (sequences of 1 elements) in a DataFrame.
Returns:
dict: A dictionary where the keys are the single signal IDs and the values are their counts.
"""
logging.info('Starting to count singles')
signals = [sig for row in df_clean[df_clean['Babbles'].str.len() >= minlength]['Babbles'] for sig in row]
freq_singles = dict.fromkeys(range(1, k+1), 0)
freq_singles.update(dict(Counter(signals)))
logging.info('Finished counting singles')
return (freq_singles)
def count_pairs(df_clean: pd.DataFrame, minlength: int) -> dict:
"""
Count the frequency of pairs signals (sequences of 2 elements) in a DataFrame.
Returns:
dict: A dictionary where the keys are the pairs signal IDs and the values are their counts.
"""
logging.info('Starting to count pairs')
# Initialize the pairs dictionary with zeros
freq_pairs = {f'a{i}': {f'b{j}': 0 for j in range(1, k + 1)} for i in range(1, k + 1)}
# Filter sequences by length and count pairs
valid_sequences = df_clean[df_clean['Babbles'].str.len() >= minlength]
counter = len(valid_sequences)
for sequence in valid_sequences['Babbles']:
# Count pairs using zip
for first, second in zip(sequence, sequence[1:]):
if f'a{first}' in freq_pairs and f'b{second}' in freq_pairs[f'a{first}']:
freq_pairs[f'a{first}'][f'b{second}'] += 1
else:
logging.debug(f'Invalid pair found: {first}, {second}')
logging.info(f'Processed {counter} Bouts that are >= {minlength} signals')
logging.info('Finished counting pairs')
return (freq_pairs)
def count_triples(df_clean: pd.DataFrame, minlength: int) -> dict:
"""
Count the frequency of triple signals (sequences of 3 elements) in a DataFrame.
Returns:
dict: A dictionary where the keys are the triple signal IDs and the values are their counts.
"""
logging.info('Starting to count triples')
# Initialize the triples dictionary with zeros
freq_triples = { f'a{i}': {f'b{j}': {f'c{k}': 0 for k in range(1, k + 1)} for j in range(1, k + 1)} for i in range(1, k + 1)}
# Filter sequences by length and count triples
valid_sequences = df_clean[df_clean['Babbles'].str.len() >= minlength]
counter = len(valid_sequences)
for sequence in valid_sequences['Babbles']:
# Count triples using zip
for first, second, third in zip(sequence, sequence[1:], sequence[2:]):
key_a = f'a{first}'
key_b = f'b{second}'
key_c = f'c{third}'
if key_a in freq_triples and key_b in freq_triples[key_a] and key_c in freq_triples[key_a][key_b]:
freq_triples[key_a][key_b][key_c] += 1
else:
logging.debug(f'Invalid triple found: {first}, {second}, {third}')
logging.info(f'Processed {counter} Bouts that are >= {minlength} signals')
logging.info('Finished counting triples')
return (freq_triples)
def count_quads(df_clean: pd.DataFrame, minlength: int) -> dict:
logging.info('Starting to count quads')
freq_quads = {}
for vala in [ 'a'+str(i) for i in range(1,k+1) ]:
freq_quads[vala] = {}
for valb in [ 'b'+str(i) for i in range(1,k+1) ]:
freq_quads[vala][valb] = {}
for valc in [ 'c'+str(i) for i in range(1,k+1) ]:
freq_quads[vala][valb][valc] = {}
for vald in [ 'd'+str(i) for i in range(1,k+1) ]:
freq_quads[vala][valb][valc][vald] = 0
counter=0
for index, row in df_clean.iterrows():
if ( len(row['Babbles']) < minlength ):
continue
else:
counter += 1
for first, second, third, fourth in zip(row['Babbles'], row['Babbles'][1:], row['Babbles'][2:], row['Babbles'][3:]):
try:
freq_quads['a'+str(first)]['b'+str(second)]['c'+str(third)]['d'+str(fourth)] += 1
except KeyError as e:
logging.debug(f'KeyError for {first} or {second} or {third} or {fourth}')
logging.info(f'Processed {counter} Bouts that are >= {minlength} signals')
logging.info('Finished counting quads')
return(freq_quads)
def count_quints(df_clean: pd.DataFrame, minlength: int) -> dict:
logging.info('Starting to count quints')
freq_quints = {}
for vala in [ 'a'+str(i) for i in range(1,k+1) ]:
freq_quints[vala] = {}
for valb in [ 'b'+str(i) for i in range(1,k+1) ]:
freq_quints[vala][valb] = {}
for valc in [ 'c'+str(i) for i in range(1,k+1) ]:
freq_quints[vala][valb][valc] = {}
for vald in [ 'd'+str(i) for i in range(1,k+1) ]:
freq_quints[vala][valb][valc][vald] = {}
for vale in [ 'e'+str(i) for i in range(1,k+1) ]:
freq_quints[vala][valb][valc][vald][vale] = 0
counter=0
for index, row in df_clean.iterrows():
if ( len(row['Babbles']) < minlength ):
continue
else:
counter += 1
for first, second, third, fourth, fifth in zip(row['Babbles'], row['Babbles'][1:], row['Babbles'][2:], row['Babbles'][3:], row['Babbles'][4:]):
try:
freq_quints['a'+str(first)]['b'+str(second)]['c'+str(third)]['d'+str(fourth)]['e'+str(fifth)] += 1
except KeyError as e:
logging.debug(f'KeyError for {first} or {second} or {third} or {fourth} or {fifth}')
logging.info(f'Processed {counter} Bouts that are >= {minlength} signals')
logging.info('Finished counting quints')
return(freq_quints)
def plot_singles(data: dict, basename: str, dfc: pd.DataFrame):
"""
Plot a histogram of the frequency of single signals.
"""
logging.info('Plotting singles')
# Create the plot
fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(list(range(1, k+1)), list(data.values()), color='indianred')
# Set the x-axis ticks and labels
ax.set_xticks(list(range(1, k+1)))
ax.set_xticklabels([i if i % 2 == 1 else '' for i in range(1, k+1)], fontsize=10)
plt.setp(ax.get_yticklabels(), fontsize=10)
# Add labels and title
plt.xlabel('Signal', fontsize=12)
plt.ylabel('Frequency', fontsize=12)
if len(dfc.index) == 1:
plt.suptitle('Frequency of Individual Signals', fontsize=14)
plt.title(f"boutID={dfc.at[0,'Bout ID']}; BoutLen={len(dfc.at[0,'Babbles'])}; Tr={dfc.at[0,'treatment']}; Sex={dfc.at[0,'sex']}", fontsize=10)
else:
plt.title('Frequency of Individual Signals', fontsize=14)
fig.tight_layout()
plt.savefig(basename + '_singles.png')
return()
def plot_pairs(data: dict, basename: str, dfc: pd.DataFrame):
"""
Plot heatmap of signal pair frequencies.
"""
logging.info('Plotting pairs')
# Create and populate frequency matrix
df = pd.DataFrame(0, columns=range(1,k+1), index=range(1,k+1), dtype=float)
for a_sig in data:
for b_sig in data[a_sig]:
row, col = int(b_sig[1:]), int(a_sig[1:])
df.loc[row, col] = int(data[a_sig][b_sig])
# Create plot
fig, ax = plt.subplots(figsize=(10,8))
im = ax.imshow(df, cmap='YlOrRd_r')
# Configure axes
ax.set_xticks(range(k))
ax.set_yticks(range(k))
ax.set_xticklabels(range(1,k+1), fontsize=10)
ax.set_yticklabels(range(1,k+1), fontsize=10)
ax.set_xlabel('Second Signal in Sequence')
ax.set_ylabel('First Signal in Sequence')
# Add title
if len(dfc.index) == 1:
row = dfc.iloc[0]
plt.suptitle('Frequency of Signal Pairs', fontsize=13)
plt.title(f'boutID={row["Bout ID"]}; BoutLen={len(row["Babbles"])}; '
f'Tr={row["treatment"]}; Sex={row["sex"]}', fontsize=10)
else:
plt.title('Frequency of Signal Pairs')
# Add colorbar and save
cbar = fig.colorbar(im)
cbar.ax.set_ylabel('Frequency', rotation=-90, va='bottom')
fig.tight_layout()
plt.savefig(basename + '_pairs.png')
return()
def setup_model_data(df_clean: pd.DataFrame, columns: list, basename: str):
"""
Prepares data for a machine learning model by creating separate CSV files
for each user-specified column, including required columns (Babbles, Bout ID) in each file,
and a combined CSV file with all specified columns.
Parameters:
df_clean (pandas.DataFrame): The input data.
columns (list): A list of column names to include.
basename (str): A base name for new CSV files.
Returns:
list: Paths to created CSV files.
"""
# Set up column order: required columns first, then user columns
required_cols = ['Babbles', 'Bout ID']
# Check for missing columns
missing_cols = [col for col in columns if col not in df_clean.columns]
if missing_cols:
raise ValueError(f"Columns not found: {', '.join(missing_cols)}")
# List to store paths of created files
created_files = []
# Create individual CSV files for each specified column
for col in columns:
try:
# Create DataFrame with required columns plus the current column
col_data = df_clean[required_cols + [col]].copy()
# Generate filename based on column name (sanitize the column name)
safe_colname = col.replace(' ', '_').replace('/', '_')
col_csv_path = f"{basename}_{safe_colname}_scm.csv"
# Export to CSV
col_data.to_csv(col_csv_path, encoding='utf-8', index=False)
created_files.append(col_csv_path)
logging.info(f"Data exported for column {col} to {col_csv_path}")
except Exception as e:
logging.error(f"Failed to export data for column {col}: {e}")
# Create a combined CSV file with all required and user-specified columns
try:
combined_data = df_clean[required_cols + columns].copy()
combined_csv_path = f"{basename}_combined.csv"
combined_data.to_csv(combined_csv_path, encoding='utf-8', index=False)
created_files.append(combined_csv_path)
logging.info(f"Combined data exported to {combined_csv_path}")
except Exception as e:
logging.error(f"Failed to export combined data: {e}")
return created_files
def main():
# Command line arguments
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, required=True,
help='input json file to read steps to clean and trasnfrom the csv file')
# parser.add_argument('-c', '--clean', action='store_true', required=False, default=False,
# help='specify this flag if you are loading in cleaned data')
parser.add_argument('-m', '--minlength', type=int, required=False, default=2,
help='minimum length for sequences to be used in pair analysis')
parser.add_argument('-k', '--kmeans', type=int, required=False, default=6,
help='number of clusters from k means clustering')
parser.add_argument('-a', '--analysis', type=str, required=False,
choices=['singles', 'pairs', 'triples', 'quads', 'quints', 'all'],
help='type of frequency analysis to perform')
parser.add_argument('-d', '--dump', action='store_true', required=False,
help='specify this flag if you want to dump the sequences that go into the plot')
parser.add_argument('-l', '--loglevel', type=str, required=False, default='WARNING',
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
help='set log level')
parser.add_argument('-sc', '--sequenceclass', type=lambda s: [item.strip() for item in s.split(',')], required=False,
help='Provide at least one column name, separated by commas, to configure the data input for the model, ex: "column1, column2, column3"')
args = parser.parse_args()
basename = 'CMBabble_Master'
config_file = args.input
global k
k = args.kmeans
# Configure logging
logging.basicConfig( level=logging.INFO,format='%(asctime)s - %(levelname)s - %(message)s')
# Extract
logging.info('Reading in json file')
config_file = args.input
# Clean and Transform
df_clean = clean_and_transform_data(config_file, basename)
logging.info('Cleaning and Transforming data process completed successfully')
# Dumps
if (args.dump):
dump_bouts(df_clean, args.minlength, args.dump)
# Analysis
if (args.analysis == 'singles' or args.analysis == 'all'):
analysis_singles(df_clean, args.minlength, basename)
if (args.analysis == 'pairs' or args.analysis == 'all'):
analysis_pairs(df_clean, args.minlength, basename)
if (args.analysis == 'triples' or args.analysis == 'all'):
analysis_triples(df_clean, args.minlength, basename)
if (args.analysis == 'quads' or args.analysis == 'all'):
analysis_quads(df_clean, args.minlength, basename)
if (args.analysis == 'quints' or args.analysis == 'all'):
analysis_quints(df_clean, args.minlength, basename)
# Sequence Classification Model Set Up
if (args.sequenceclass):
logging.info('Configuring the data input for the Sequence Classification Model')
columns = args.sequenceclass
setup_model_data(df_clean, columns, basename)
return
if __name__ == "__main__":
main()