-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils_pv.py
394 lines (329 loc) · 15.2 KB
/
utils_pv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import numpy as np
import matplotlib.pyplot as plt
import sys, os, pvlib, warnings
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
with warnings.catch_warnings():
# NOTE: CSV files for modules contains rows with duplicated names.
# supppressing duplicated names warnings
warnings.simplefilter("ignore")
#Selecting the module database: sandia or CEC
sandia_modules = pvlib.pvsystem.retrieve_sam('SandiaMod')
cec_modules = pvlib.pvsystem.retrieve_sam('CECMod')
#Selecting the inverter database: CEC or Anton Driesse
cec_inverters = pvlib.pvsystem.retrieve_sam('CECInverter')
adr_inverters = pvlib.pvsystem.retrieve_sam('ADRInverter')
# return list of available modules in each database
def get_available_modules(module_family='sandia'):
assert module_family.lower() in ['sandia', 'cec']
if module_family.lower()=='sandia'.lower():
return list(sandia_modules[sandia_modules.keys()])
elif module_family.lower()=='cec'.lower():
return list(cec_modules[cec_modules.keys()])
def get_available_inverters(inverter_family='cec'):
assert inverter_family.lower() in ['adr', 'cec']
if inverter_family.lower()=='cec'.lower():
return list(cec_inverters[cec_inverters.keys()])
elif inverter_family.lower()=='adr'.lower():
return list(adr_inverters[adr_inverters.keys()])
def find_module_family(module_name):
assert not module_name is None
family = None
sandia_modules = get_available_modules(module_family='sandia')
cec_modules = get_available_modules(module_family='cec')
if module_name in sandia_modules:
family = 'sandia'
if module_name in cec_modules:
if family is None:
family = 'cec'
else:
print('[Error] module found in both families (databases)')
if family is None:
print('[Error] module name not found')
return family
def find_inverter_family(inverter_name):
assert not inverter_name is None
family = None
adr_inverters = get_available_inverters(inverter_family='adr')
cec_inverters = get_available_inverters(inverter_family='cec')
if inverter_name in adr_inverters:
family = 'adr'
if inverter_name in cec_inverters:
if family is None:
family = 'cec'
else:
print('[Error] inverter found in both families (databases)')
if family is None:
print('[Error] inverter name not found')
return family
def get_city_info(city_name):
# returns latitude, longitude, sndaltitude (double) of a city
if city_name=='Barcelona':
return {'latitude':41.377, 'longitude':2.188, 'altitude':10}
elif city_name=='Bern':
return {'latitude':46.951, 'longitude':7.450, 'altitude':510}
elif city_name=='Dijon':
return {'latitude':47.313, 'longitude':5.049, 'altitude':236}
elif city_name=='Lausanne':
return {'latitude':46.520, 'longitude':6.632, 'altitude':496}
elif city_name=='London':
return {'latitude':51.496, 'longitude':-0.118, 'altitude':15}
elif city_name=='Milan':
return {'latitude':45.473, 'longitude':9.185, 'altitude':133}
elif city_name=='Paris':
return {'latitude':48.856, 'longitude':2.351, 'altitude':34}
elif city_name=='Rome':
return {'latitude':41.894, 'longitude':12.484, 'altitude':36}
elif city_name=='Tehran':
return {'latitude':35.689, 'longitude':51.407, 'altitude':1161}
else:
print('Info not given for '+ city_name)
raise NotImplementedError
def visualize_env(env_dict, num_days=5, year=2018, scenario_name=None):
''' visualizes data from the given year '''
# get data tuples and tie series corresponding to the given scenario
if scenario_name is None:
scenario_name = list(env_dict['train_scenarios'].keys())[0]
clients_data = env_dict['train_scenarios'][scenario_name]['clients_data']
time_series = env_dict['train_scenarios'][scenario_name]['time_series']
labels = [int(x) for x in env_dict['clients_config']['azimuth']]
if len(env_dict['city_names'])==1:
colors = ["#%06x" % np.random.randint(0, 0xFFFFFF) for _ in range(env_dict['num_clients'])]
else:
colors = [(0,1,0), (0,0,1), (1,0,1)]#list(itertools.product((0,1), (0,1), (0,1)))[1:-1]
#np.random.shuffle(colors)
# plot num_days days in the given year
for month in env_dict['months']:
client_num = 0
_, axs = plt.subplots(2, 1, figsize = (30, 8*2))
for mode_num in np.arange(len(env_dict['city_names'])):
for i in np.arange(env_dict['num_clients_per_mode'][mode_num]):
# choose color
if len(env_dict['city_names'])==1:
color = colors[client_num]
else:
intensity = 0.2+(1-0.2)*i/(env_dict['num_clients_per_mode'][mode_num]-1) if env_dict['num_clients_per_mode'][mode_num]>1 else 0.5
color = tuple(x * intensity for x in colors[mode_num])
_, y_train, _, y_valid = clients_data[client_num]
y_mean, y_std = np.mean(y_train, axis=0), np.std(y_train, axis=0) + 1e-8
# normalized and unnormalized data
ts_unnorm = time_series[client_num]
ts_unnorm = ts_unnorm.loc[(ts_unnorm['month']==month) & (ts_unnorm['year']==year), :]
ts_unnorm = ts_unnorm.loc[ts_unnorm['hour_day'].isin(env_dict['hours']), :]
ts_unnorm = ts_unnorm.iloc[np.arange(num_days*len(env_dict['hours'])), :]
ts_norm = (ts_unnorm.loc[:, 'target'] - y_mean) / y_std
#if mode_num>-1:
for day_num in np.arange(num_days):
inds_day = day_num*len(env_dict['hours']) + np.arange(len(env_dict['hours']))
if day_num==0:
axs[0].plot(inds_day, ts_unnorm.loc[:, 'target'].iloc[inds_day],
label=labels[client_num], lw=1, c=color)
axs[1].plot(inds_day, ts_norm.iloc[inds_day],
label=labels[client_num], lw=1, c=color)
else:
axs[0].plot(inds_day, ts_unnorm.loc[:, 'target'].iloc[inds_day],
lw=1, c=color)
axs[1].plot(inds_day, ts_norm.iloc[inds_day],
lw=1, c=color)
client_num += 1
axs[0].set_ylabel('power unnormalized')
axs[1].set_ylabel('power normalized')
for ax in axs:
ax.set_title(env_dict['info'] + ' - month ' + str(month))
for i in np.arange(num_days+1):
ax.axvline(x=len(env_dict['hours'])*i, ymin=0, ymax=1)
tick_locs = np.linspace(0, num_days*len(env_dict['hours']),
num=int(num_days*len(env_dict['hours'])/4),
endpoint=False).astype(int)
ax.set_xticks(tick_locs, labels=ts_unnorm.loc[:, 'hour_day'].iloc[tick_locs])
ax.set_xlabel(str(num_days) + ' days of data')
ax.legend()
plt.show()
# ------ PV Panels ------
def visualize_pv(client_ts, pred_mean=None, pred_std=None,
selected_months=None, hours=None, num_days=None, figsize=(16, 6)):
'''
visulaize predictions for one client
can be used for plotting predictions either on training or validation data
- client_ts: time series data of the client in one year
(2018 if plotting for training, 2019 for validation)
- pred_mean: predicted values
- pred_std: in case of using a GP for making predictions, predicted std. o.w., None
- selected_months: if training a model only for a subset of months, specify here
clients_ts includes all months but pred_mean is only on these months
- hours: if training a model only for a subset of hours, specify here
clients_ts includes all hours but pred_mean is only on these months
- num_days: number of days for visualization. if None, visualizes for the whole year
'''
_, ax = plt.subplots(1,1, figsize=figsize)
if hours is None:
hours = np.arange(24)
if selected_months is not None:
client_ts = client_ts.loc[client_ts['month'].isin(selected_months), :]
client_ts = client_ts.reset_index()
if num_days is None:
ax.plot(list(client_ts.target), c='b', lw=1, label='true')
else:
ax.plot(list(client_ts.target)[0:24*num_days], c='b', lw=1, label='true')
# label with hours
# plot predictions
if pred_mean is not None:
# get indexes of the ts that correspond to predicted steps
ind = client_ts[client_ts['hour_day'].isin(hours)].index.tolist()
if num_days is not None: # plot only a fraction of the data
ind = ind[0:num_days*len(hours)]
pred_mean=pred_mean[0:num_days*len(hours)]
ax.scatter(ind, pred_mean, color='r', s=5, label='prediction')
if pred_std is not None:
lb = list(client_ts.target)
ub = list(client_ts.target)
for i in np.arange(len(ind)):
lb[ind[i]] = pred_mean[i] - 1.645 * pred_std[i]
ub[ind[i]] = pred_mean[i] + 1.645 * pred_std[i]
ax.fill_between(np.arange(len(lb)), lb, ub, label = 'confidence', color='red',
alpha=0.5)
plt.show()
def visualize_pv_train_valid(env_dict, scenario_name, client_num, model, figsize=(30, 8*2)):
time_series = env_dict['train_scenarios'][scenario_name]['time_series']
for month in env_dict['months']:
_, axs = plt.subplots(2,1, figsize=figsize)
# plot train data
# plot validation data
def normalize_data_tup(data):
# for one client only
data_nrm=(None, None, None, None)
# statistics on train data
x_mean, y_mean = np.mean(data[0], axis=0), np.mean(data[1], axis=0)
x_std, y_std = np.std(data[0], axis=0) + 1e-8, np.std(data[1], axis=0) + 1e-8
# normalize
data_nrm = ((data[0] - x_mean[None, :]) / x_std[None, :],
(data[1] - y_mean[None, :]) / y_std[None, :],
(data[2] - x_mean[None, :]) / x_std[None, :],
(data[3] - y_mean[None, :]) / y_std[None, :])
# check sizes
assert data_nrm[0].shape == data[0].shape
assert data_nrm[1].shape == data[1].shape
assert data_nrm[2].shape == data[2].shape
assert data_nrm[3].shape == data[3].shape
return data_nrm, y_mean, y_std
def tile_in_list(a, l):
'''
a: values
l: list of length of the output list
if a is a list and l is a list, repeats a_i for l_i times.
if a is a single value, repeats a for sum(l) times
'''
# convert all to list
if not isinstance(a,list):
a=[a]
if not isinstance(l,list):
l=[l]
# total length of the result
len_tot = sum(l)
# if a is already the correct length, return it
if len(a)==len_tot:
return a
# if a is a single element, repeat it
if len(a)==1:
return [a[0]]*len_tot
# repeat a_i for l_i times
if len(a)==len(l):
res=[]
for ai, li in zip(a, l):
res += [ai]*li
return res
else:
print('[ERROR]: should pass a single value, list of values to be tiled, or a full list')
return []
def tile_in_list(a, l):
'''
a: values
l: list of length of the output list
if a is a list and l is a list, repeats a_i for l_i times.
if a is a single value, repeats a for sum(l) times
'''
# convert all to list
if not isinstance(a,list):
a=[a]
if not isinstance(l,list):
l=[l]
# total length of the result
len_tot = sum(l)
# if a is already the correct length, return it
if len(a)==len_tot:
return a
# if a is a single element, repeat it
if len(a)==1:
return [a[0]]*len_tot
# repeat a_i for l_i times
if len(a)==len(l):
res=[]
for ai, li in zip(a, l):
res += [ai]*li
return res
else:
print('[ERROR]: should pass a single value, list of values to be tiled, or a full list')
return []
def normalize_data_tup(data):
# for one client only
data_nrm=(None, None, None, None)
# statistics on train data
x_mean, y_mean = np.mean(data[0], axis=0), np.mean(data[1], axis=0)
x_std, y_std = np.std(data[0], axis=0) + 1e-8, np.std(data[1], axis=0) + 1e-8
# normalize
data_nrm = ((data[0] - x_mean[None, :]) / x_std[None, :],
(data[1] - y_mean[None, :]) / y_std[None, :],
(data[2] - x_mean[None, :]) / x_std[None, :],
(data[3] - y_mean[None, :]) / y_std[None, :])
# check sizes
assert data_nrm[0].shape == data[0].shape
assert data_nrm[1].shape == data[1].shape
assert data_nrm[2].shape == data[2].shape
assert data_nrm[3].shape == data[3].shape
return data_nrm, y_mean, y_std
def visualize_ts(client_ts, pred_mean=None, pred_std=None, title=None,
selected_months=None, hours = None, figsize=(16, 6)):
'''
visulaize predictions for one client
USAGE EXAMPLE
for client_num in np.arange(num_clients):
title = 'Predictions on training data for client {:2.0f}'.format(client_num)
_, predictions = clients_train_data[client_num] # assume an ideal model with zero error, in practice, this must be the output of your model on clients_train_data[client_num][0]
visualize_ts(clients_ts=clients_train_ts[client_num], pred_mean=predictions, selected_months=months, hours=hours, title = title)
'''
# check predictions provided for all clients
#if (pred_mean is not None) or (pred_std is not None):
# assert (pred_mean is not None) and (pred_std is not None)
# assert len(pred_mean) == len(pred_std)
fig, ax = plt.subplots(1,1, figsize=figsize)
if selected_months is not None:
client_ts = client_ts.loc[client_ts['month'].isin(selected_months), :]
client_ts = client_ts.reset_index()
ax.plot(list(client_ts.p_mp), c='b', lw=1, label='true')
# TODO label with hours
ax.set_xlabel('time (h)')
ax.set_xlabel('generated power (kWh/h)')
if not title is None:
ax.set_title(title)
# plot predictions
if pred_mean is not None and hours is not None:
# get indexes of the ts that correspond to predicted steps
ind = client_ts[client_ts['hour_day'].isin(hours)].index.tolist()
ind = ind[0:pred_mean.shape[0]] # TODO: this is a bug in test_ts. ind and pred means must be the same size
#ind = [i-1 for i in ind]
ax.scatter(ind, pred_mean, color='r', s=5, label='prediction')
if pred_std is not None:
lb = list(client_ts.p_mp)
ub = list(client_ts.p_mp)
for i in np.arange(len(ind)):
lb[ind[i]] = pred_mean[i] - 1.645 * pred_std[i]
ub[ind[i]] = pred_mean[i] + 1.645 * pred_std[i]
ax.fill_between(np.arange(len(lb)), lb, ub, label = 'confidence', color='red',
alpha=0.5)
from sklearn.metrics import r2_score
def adj_r2_scorer(estimator, X, y):
y = y.flatten()
y_pred = estimator.predict(X).flatten()
R2 = r2_score(y, y_pred)
n, p = X.shape
return 1-(1-R2)*(n-1)/(n-p-1)