-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathserver.py
164 lines (136 loc) · 4.71 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from flask import Flask,render_template,jsonify,request
import pandas as pd
import numpy as np
import sqlite3
import geopandas as gpd
import json
from editdistance import distance
from collections import OrderedDict
import re
app = Flask(__name__)
# LOAD DATA
con = sqlite3.connect("./transition_eco_prop_withkeywords_and_classes_and_polarity.db",check_same_thread=False)
def regexp(pattern, input):
return bool(re.match(pattern, input))
con.create_function('regexp', 2, regexp)
# LOAD VERBS
all_verbs = pd.read_sql_query("select distinct(verbe) from transition_eco",con)["verbe"].values.tolist()
all_verbs.extend(pd.read_sql_query("select distinct(verbe2) from transition_eco",con)["verbe2"].values.tolist())
all_verbs = list(set(all_verbs))
from owlready2 import get_ontology
onto = get_ontology("resources/lexiques/transportonto4.owl")
onto.load()
classes = list(onto.classes())
ontology_data = []
for c in classes[1:]:
try:
ontology_data.append([str(c.name),str(c.prefLabel[0]),[str(lab)for lab in c.altLabel] ,c.iri])
except:
pass
df_ontolgie = pd.DataFrame(ontology_data,columns="name prefLabel altLabel iri".split())
# LOAD OBJECT
all_objects = df_ontolgie.name.values
# FEATURES
def get_ordered_ancestors(class_,include_self=False):
c = class_
res= []
if include_self:
res.append(str(c.name))
while 1:
c = c.is_a
if len(c)<1:
break
c = c[0]
res.append(str(c.name))
return res
all_features = []
for c in classes[1:]:
ancestors = get_ordered_ancestors(c)
if "caractéristique" in ancestors:
all_features.append(c.name)
@app.route("/")
def home():
return render_template("skeleton.html")
@app.route('/verbs',methods=["POST","GET"])
def get_verbs():
term = request.get_json().get("q")
results = ranked_dist(term,all_verbs)
data = OrderedDict({})
data["results"] = []
i=0
for res in results:
data["results"].append({"id":res,"text":res})
if i >5:break
i+=1
return jsonify(data)
@app.route('/objects',methods=["POST","GET"])
def get_objects():
term = request.get_json().get("q")
results = ranked_dist(term,all_objects)
data = OrderedDict({})
data["results"] = []
i=0
for res in results:
data["results"].append({"id":res,"text":res})
if i >5:break
i+=1
return jsonify(data)
@app.route("/features",methods=["POST","GET"])
def get_features():
term = request.get_json().get("q")
results = ranked_dist(term,all_features)
data = OrderedDict({})
data["results"] = []
i = 0
for res in results:
data["results"].append({"id":res,"text":res})
if i >5:break
i+=1
return jsonify(data)
@app.route("/get_geo_data")
def dep_data():
return jsonify(json.load(open("resources/geodata/departements_centroid.geojson")))
@app.route("/query" ,methods=['GET', 'POST'])
def query():
content = request.get_json()
selected_verb = content.get('verb', [])
selected_feature =content.get('feat',[])
selected_object = content.get('obj', [])
selected_polarite = content.get('pol', None)
if selected_polarite not in "-1 1 0".split():
selected_polarite=None
print(selected_verb,selected_object,selected_feature,selected_polarite)
template="""
select * from transition_eco
where {0};
"""
conditions = ""
if selected_verb and not selected_polarite:
conditions+="verbe REGEXP \".*({0}).*\"".format("|".join(selected_verb))
if selected_feature:
if selected_verb:
conditions +=" and "
conditions+="keywords_in_onto REGEXP \".*({0}).*\"".format("|".join(selected_feature))
if selected_object:
if selected_verb or selected_feature:
conditions +=" and "
conditions+="keywords_in_onto REGEXP \".*({0}).*\"".format("|".join(selected_object))
if selected_polarite:
if selected_verb or selected_feature or selected_object:
conditions +=" and "
conditions+="verbe_polarity == {0}".format(selected_polarite)
print(template.format(conditions))
selection = pd.read_sql_query(template.format(conditions),con)
selection["dep_code"] = selection.code_postal.apply(lambda x : x[:2])
counts = selection.groupby("dep_code",as_index=False).count()
dep_count = dict(counts["dep_code verbe".split()].values)
print(dep_count)
return dep_count
def ranked_dist(word,other_words):
df = pd.DataFrame(other_words,columns=["word"])
df["dist"] = get_dist(word,other_words)
df = df.sort_values(by="dist")
return OrderedDict(dict(df.values))
def get_dist(word,other_words):
return [distance(word,w) for w in other_words]
app.run(host="0.0.0.0",debug=True)