-
Notifications
You must be signed in to change notification settings - Fork 0
/
is_military.py
95 lines (78 loc) · 3.13 KB
/
is_military.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# USAGE
# python pi_deep_learning.py --prototxt models/bvlc_googlenet.prototxt --model models/bvlc_googlenet.caffemodel --labels synset_words.txt --image images/barbershop.png
# python pi_deep_learning.py --prototxt models/squeezenet_v1.0.prototxt --model models/squeezenet_v1.0.caffemodel --labels synset_words.txt --image images/barbershop.png
# import the necessary packages
import numpy as np
import argparse
import time
import cv2.cv2
# construct the argument parse and parse the arguments
def main():
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-l", "--labels", required=True,
help="path to ImageNet labels (i.e., syn-sets)")
args = vars(ap.parse_args())
# load the class labels from disk
rows = open(args["labels"]).read().strip().split("\n")
classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows]
# load the input image from disk
image = cv2.imread(args["image"])
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
def predict(image, net, classes):
# our CNN requires fixed spatial dimensions for our input image(s)
# so we need to ensure it is resized to 224x224 pixels while
# performing mean subtraction (104, 117, 123) to normalize the input;
# after executing this command our "blob" now has the shape:
# (1, 3, 224, 224)
blob = cv2.dnn.blobFromImage(image, 1, (224, 224), (104, 117, 123))
# set the blob as input to the network and perform a forward-pass to
# obtain our output classification
net.setInput(blob)
start = time.time()
preds = net.forward()
end = time.time()
#print("[INFO] classification took {:.5} seconds".format(end - start))
# sort the indexes of the probabilities in descending order (higher
# probabilitiy first) and grab the top-5 predictions
preds = preds.reshape((1, len(classes)))
idxs = np.argsort(preds[0])[::-1]
# loop over the top-5 predictions and display them
military = "military uniform"
print(classes[idxs[0]])
if classes[idxs[0]] == military:
print("Found a {}".format(military))
for i, idx in enumerate(idxs):
# draw the top prediction on the input image
# display the predicted label + associated probability to the
# console
if classes[idx] == military:
return True
if i == 5:
break
return False
# for i, idx in enumerate(idxs):
# # draw the top prediction on the input image
# if i == 0:
# text = "Label: {}, {:.2f}%".format(classes[idx],
# preds[0][idx] * 100)
# if classes[idx] == military:
# is_military = True
# cv2.putText(image, text, (5, 25), cv2.FONT_HERSHEY_SIMPLEX,
# 0.7, (0, 0, 255), 2)
# # display the predicted label + associated probability to the
# # console
# print("[INFO] {}. label: {}, probability: {:.5}".format(i + 1,
# classes[idx], preds[0][idx]))
# display the output image
# cv2.imshow("Image", image)
# cv2.waitKey(0)
if __name__ == "__main__":
main()