-
Notifications
You must be signed in to change notification settings - Fork 262
/
Matrix_Chain_Multiplication.py
59 lines (42 loc) · 1.42 KB
/
Matrix_Chain_Multiplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def matrix_product(p):
length = len(p) # len(p) = number of matrices + 1
m = [[-1]*length for _ in range(length)]
s = [[-1]*length for _ in range(length)]
matrix_product_helper(p, 1, length - 1, m, s)
return m, s
def matrix_product_helper(p, start, end, m, s):
if m[start][end] >= 0:
return m[start][end]
if start == end:
q = 0
else:
q = float('inf')
for k in range(start, end):
temp = matrix_product_helper(p, start, k, m, s) \
+ matrix_product_helper(p, k + 1, end, m, s) \
+ p[start - 1]*p[k]*p[end]
if q > temp:
q = temp
s[start][end] = k
m[start][end] = q
return q
def print_parenthesization(s, start, end):
if start == end:
print('A[{}]'.format(start), end='')
return
k = s[start][end]
print('(', end='')
print_parenthesization(s, start, k)
print_parenthesization(s, k + 1, end)
print(')', end='')
n = int(input('Enter number of matrices: '))
p = []
for i in range(n):
temp = int(input('Enter number of rows in matrix {}: '.format(i + 1)))
p.append(temp)
temp = int(input('Enter number of columns in matrix {}: '.format(n)))
p.append(temp)
m, s = matrix_product(p)
print('The number of scalar multiplications needed:', m[1][n])
print('Optimal parenthesization: ', end='')
print_parenthesization(s, 1, n)