forked from johri-lab/Automatic-leaf-infection-identifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
240 lines (171 loc) · 6.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import cv2
import numpy as np
import argparse, sys, os
from GUIdriver import *
import pandas as pd
def endprogram():
print ("\nProgram terminated!")
sys.exit()
#Reading the image by parsing the argument
text = str(ImageFile)
print ("\n*********************\nImage : " + ImageFile + "\n*********************")
img = cv2.imread(text)
img = cv2.resize(img ,((int)(img.shape[1]/5),(int)(img.shape[0]/5)))
original = img.copy()
neworiginal = img.copy()
cv2.imshow('original',img)
#Calculating number of pixels with shade of white(p) to check if exclusion of these pixels is required or not (if more than a fixed %) in order to differentiate the white background or white patches in image caused by flash, if present.
p = 0
for i in range(img.shape[0]):
for j in range(img.shape[1]):
B = img[i][j][0]
G = img[i][j][1]
R = img[i][j][2]
if (B > 110 and G > 110 and R > 110):
p += 1
#finding the % of pixels in shade of white
totalpixels = img.shape[0]*img.shape[1]
per_white = 100 * p/totalpixels
'''
print 'percantage of white: ' + str(per_white) + '\n'
print 'total: ' + str(totalpixels) + '\n'
print 'white: ' + str(p) + '\n'
'''
#excluding all the pixels with colour close to white if they are more than 10% in the image
if per_white > 10:
img[i][j] = [200,200,200]
cv2.imshow('color change', img)
#Guassian blur
blur1 = cv2.GaussianBlur(img,(3,3),1)
#mean-shift algo
newimg = np.zeros((img.shape[0], img.shape[1],3),np.uint8)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER , 10 ,1.0)
img = cv2.pyrMeanShiftFiltering(blur1, 20, 30, newimg, 0, criteria)
cv2.imshow('means shift image',img)
#Guassian blur
blur = cv2.GaussianBlur(img,(11,11),1)
#Canny-edge detection
canny = cv2.Canny(blur, 160, 290)
canny = cv2.cvtColor(canny,cv2.COLOR_GRAY2BGR)
#creating border around image to close any open curve cut by the image border
#bordered = cv2.copyMakeBorder(canny,10,10,10,10, cv2.BORDER_CONSTANT, (255,255,255)) #function not working(not making white coloured border)
#bordered = cv2.rectangle(canny,(-2,-2),(275,183),(255,255,255),3)
#cv2.imshow('Canny on meanshift bordered image',bordered)
#contour to find leafs
bordered = cv2.cvtColor(canny,cv2.COLOR_BGR2GRAY)
contours,hierarchy = cv2.findContours(bordered, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
maxC = 0
for x in range(len(contours)): #if take max or one less than max then will not work in
if len(contours[x]) > maxC: # pictures with zoomed leaf images
maxC = len(contours[x])
maxid = x
perimeter = cv2.arcLength(contours[maxid],True)
#print perimeter
Tarea = cv2.contourArea(contours[maxid])
cv2.drawContours(neworiginal,contours[maxid],-1,(0,0,255))
cv2.imshow('Contour',neworiginal)
#cv2.imwrite('Contour complete leaf.jpg',neworiginal)
#Creating rectangular roi around contour
height, width, _ = canny.shape
min_x, min_y = width, height
max_x = max_y = 0
frame = canny.copy()
# computes the bounding box for the contour, and draws it on the frame,
for contour, hier in zip(contours, hierarchy):
(x,y,w,h) = cv2.boundingRect(contours[maxid])
min_x, max_x = min(x, min_x), max(x+w, max_x)
min_y, max_y = min(y, min_y), max(y+h, max_y)
if w > 80 and h > 80:
#cv2.rectangle(frame, (x,y), (x+w,y+h), (255, 0, 0), 2) #we do not draw the rectangle as it interferes with contour later on
roi = img[y:y+h , x:x+w]
originalroi = original[y:y+h , x:x+w]
if (max_x - min_x > 0 and max_y - min_y > 0):
roi = img[min_y:max_y , min_x:max_x]
originalroi = original[min_y:max_y , min_x:max_x]
#cv2.rectangle(frame, (min_x, min_y), (max_x, max_y), (255, 0, 0), 2) #we do not draw the rectangle as it interferes with contour
cv2.imshow('ROI', frame)
cv2.imshow('rectangle ROI', roi)
img = roi
#Changing colour-space
#imghsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
imghls = cv2.cvtColor(roi, cv2.COLOR_BGR2HLS)
cv2.imshow('HLS', imghls)
imghls[np.where((imghls==[30,200,2]).all(axis=2))] = [0,200,0]
cv2.imshow('new HLS', imghls)
#Only hue channel
huehls = imghls[:,:,0]
cv2.imshow('img_hue hls',huehls)
#ret, huehls = cv2.threshold(huehls,2,255,cv2.THRESH_BINARY)
huehls[np.where(huehls==[0])] = [35]
cv2.imshow('img_hue with my mask',huehls)
#Thresholding on hue image
ret, thresh = cv2.threshold(huehls,28,255,cv2.THRESH_BINARY_INV)
cv2.imshow('thresh', thresh)
#Masking thresholded image from original image
mask = cv2.bitwise_and(originalroi,originalroi,mask = thresh)
cv2.imshow('masked out img',mask)
#Finding contours for all infected regions
contours,heirarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
Infarea = 0
for x in range(len(contours)):
cv2.drawContours(originalroi,contours[x],-1,(0,0,255))
cv2.imshow('Contour masked',originalroi)
#Calculating area of infected region
Infarea += cv2.contourArea(contours[x])
if Infarea > Tarea:
Tarea = img.shape[0]*img.shape[1]
print ('_________________________________________\n Perimeter: %.2f' %(perimeter)
+ '\n_________________________________________')
print ('_________________________________________\n Total area: %.2f' %(Tarea)
+ '\n_________________________________________')
#Finding the percentage of infection in the leaf
print ('_________________________________________\n Infected area: %.2f' %(Infarea)
+ '\n_________________________________________')
try:
per = 100 * Infarea/Tarea
except ZeroDivisionError:
per = 0
print ('_________________________________________\n Percentage of infection region: %.2f' %(per)
+ '\n_________________________________________')
print("\n*To terminate press and hold (q)*")
cv2.imshow('orig',original)
"""****************************************update dataset*******************************************"""
#Updating a dataset file to maintain log of the leaf images identified.
print("\nDo you want to run the classifier(Y/N):")
n = cv2.waitKey(0) & 0xFF
if n == ord('q' or 'Q'):
endprogram()
#import csv file library
import csv
directory = 'datasetlog'
filename = directory+'/Datasetunlabelledlog.csv'
imgid = "/".join(text.split('/')[-2:])
while True:
if n == ord('y'or'Y'):
fieldnames = ['fold num', 'imgid', 'feature1', 'feature2', 'feature3']
print ('Appending to ' + str(filename)+ '...')
try:
log = pd.read_csv(filename)
logfn = int(log.tail(1)['fold num'])
foldnum = (logfn+1)%10
L = [str(foldnum), imgid, str(Tarea), str(Infarea), str(perimeter)]
my_df = pd.DataFrame([L])
my_df.to_csv(filename, mode='a', index=False, header=False)
print ('\nFile ' + str(filename)+ ' updated!' )
except IOError:
if directory not in os.listdir():
os.system('mkdir ' + directory)
foldnum = 0
L = [str(foldnum), imgid, str(Tarea), str(Infarea), str(perimeter)]
my_df = pd.DataFrame([fieldnames, L])
my_df.to_csv(filename, index=False, header=False)
print ('\nFile ' + str(filename)+ ' updated!' )
finally:
import classifier
endprogram()
elif n == ord('n' or 'N') :
print ('File not updated! \nSuccessfully terminated!')
break
else:
print ('invalid input!')
break