forked from RachelGultom2000/rachelgultom2000.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.js
105 lines (83 loc) · 4.01 KB
/
script.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
let model;
let class_indices;
let fileUpload = document.getElementById('uploadImage')
let img = document.getElementById('image')
let boxResult = document.querySelector('.box-result')
let confidence = document.querySelector('.confidence')
let pconf = document.querySelector('.box-result p')
let progressBar =
new ProgressBar.Circle('#progress', {
color: 'limegreen',
strokeWidth: 10,
duration: 2000, // milliseconds
easing: 'easeInOut'
});
async function fetchData(){
let response = await fetch('./class_indices.json');
let data = await response.json();
data = JSON.stringify(data);
data = JSON.parse(data);
return data;
}
// here the data will be return.
// Initialize/Load model
async function initialize() {
let status = document.querySelector('.init_status')
status.innerHTML = 'Loading Model .... <span class="fa fa-spinner fa-spin"></span>'
model = await tf.loadLayersModel('./tensorflowjs-model/model.json');
status.innerHTML = 'Model Loaded Successfully <span class="fa fa-check"></span>'
}
async function predict() {
// Function for invoking prediction
let img = document.getElementById('image')
let offset = tf.scalar(255)
let tensorImg = tf.browser.fromPixels(img).resizeNearestNeighbor([224,224]).toFloat().expandDims();
let tensorImg_scaled = tensorImg.div(offset)
prediction = await model.predict(tensorImg_scaled).data();
fetchData().then((data)=>
{
predicted_class = tf.argMax(prediction)
class_idx = Array.from(predicted_class.dataSync())[0]
document.querySelector('.pred_class').innerHTML = data[class_idx]
document.querySelector('.inner').innerHTML = `${parseFloat(prediction[class_idx]*100).toFixed(2)}% SURE`
console.log(data)
console.log(data[class_idx])
console.log(prediction)
progressBar.animate(prediction[class_idx]-0.005); // percent
pconf.style.display = 'block'
confidence.innerHTML = Math.round(prediction[class_idx]*100)
}
);
}
fileUpload.addEventListener('change', function(e){
let uploadedImage = e.target.value
if (uploadedImage){
document.getElementById("blankFile-1").innerHTML = uploadedImage.replace("C:\\fakepath\\","")
document.getElementById("choose-text-1").innerText = "Change Selected Image"
document.querySelector(".success-1").style.display = "inline-block"
let extension = uploadedImage.split(".")[1]
if (!(["doc","docx","pdf"].includes(extension))){
document.querySelector(".success-1 i").style.border = "1px solid limegreen"
document.querySelector(".success-1 i").style.color = "limegreen"
}else{
document.querySelector(".success-1 i").style.border = "1px solid rgb(25,110,180)"
document.querySelector(".success-1 i").style.color = "rgb(25,110,180)"
}
}
let file = this.files[0]
if (file){
boxResult.style.display = 'block'
const reader = new FileReader();
reader.readAsDataURL(file);
reader.addEventListener("load", function(){
img.style.display = "block"
img.setAttribute('src', this.result);
});
}
else{
img.setAttribute("src", "");
}
initialize().then( () => {
predict()
})
})