-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathadvcl_NN.py
230 lines (193 loc) · 6.33 KB
/
advcl_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import matplotlib.pyplot as plt
import pandas as pd
from rich import pretty, print
from rich.progress import BarColumn, Progress
from sklearn.metrics import (
accuracy_score,
auc,
classification_report,
f1_score,
plot_confusion_matrix,
roc_auc_score,
roc_curve,
)
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import LabelBinarizer, LabelEncoder
import utils
def draw_roc(y_test, y_pred):
lb = LabelBinarizer()
lb.fit(y_test)
lb.classes_.tolist()
fpr = dict()
tpr = dict()
roc_auc = dict()
by_test = lb.transform(y_test)
by_pred = lb.transform(y_pred)
for i in range(4):
fpr[i], tpr[i], _ = roc_curve(by_test[:, i], by_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
roc_auc = roc_auc_score(by_test, by_pred, average=None)
plt.figure(figsize=(8, 5))
for i in range(4):
plt.plot(
fpr[i],
tpr[i],
label="%s ROC curve (area = %0.2f)" % (lb.classes_.tolist()[i], roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.title("Single Hidden Layer Neural Network Roc-Curve")
plt.xlabel("False Positive Rate", fontsize=10)
plt.ylabel("True Positive Rate", fontsize=10)
plt.tick_params(axis="both", which="major", labelsize=12)
plt.legend(loc="lower right", fontsize=7, frameon=False)
plt.show()
def draw_confusion_matrix(Clf, X, y):
titles_options = [
("Confusion matrix, without normalization", None),
("Neural network confusion matrix", "true"),
]
# colors: Wistia too yellow
for title, normalize in titles_options:
disp = plot_confusion_matrix(Clf, X, y, cmap="PuBuGn", normalize=normalize)
disp.ax_.set_title(title)
plt.show()
def execute_and_report(learn_rate, acti, current_params):
clf = MLPClassifier(
activation=acti,
learning_rate_init=learn_rate,
random_state=5213890,
hidden_layer_sizes=current_params,
)
clf.fit(train_x, train_y)
# Apply on the training set
print("Training set:")
y_pred = clf.predict(train_x)
print(classification_report(train_y, y_pred))
# Apply on the test set and evaluate the performance
y_pred = clf.predict(test_x)
print("Test set:")
print(classification_report(test_y, y_pred))
acc = accuracy_score(test_y, y_pred) * 100
f1 = f1_score(test_y, y_pred, average="weighted") * 100
# draw draw
draw_confusion_matrix(clf, test_x, test_y)
draw_roc(test_y, y_pred)
# plt.plot(clf.loss_curve_)
# plt.show()
# report
return {
"Params": f"{acti}, {learn_rate}, {current_params}",
"accuracy %": round(acc, 2),
"F1 weighted %": round(f1, 2),
}
pretty.install()
pd.set_option("display.max_rows", None)
# DATASET
train_x, train_y, test_x, test_y = utils.load_tracks_xyz(
buckets="discrete", extractclass=("album", "type"), splits=2
).values()
# feature to reshape
label_encoders = dict()
column2encode = [
("track", "language_code"),
("album", "listens"),
("track", "license"),
("album", "comments"),
("album", "date_created"),
("album", "favorites"),
("artist", "comments"),
("artist", "date_created"),
("artist", "favorites"),
("track", "comments"),
("track", "date_created"),
("track", "duration"),
("track", "favorites"),
("track", "interest"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
le.fit(test_x[col])
train_x[col] = le.fit_transform(train_x[col])
test_x[col] = le.fit_transform(test_x[col])
label_encoders[col] = le
le = LabelEncoder()
le.fit(train_y)
test_y = le.fit_transform(test_y)
train_y = le.fit_transform(train_y)
class_name = ("album", "type")
# Preparation
count = 0
reports = pd.DataFrame(columns=["Params", "accuracy %", "F1 weighted %"])
params = [
{
"activations": "identity",
"learning_rate_inits": 0.001,
"hidden_layer_sizes": (40, 40),
},
{
"activations": "identity",
"learning_rate_inits": 0.001,
"hidden_layer_sizes": (40, 20, 8),
# old single layer "learning_rate_inits": 0.02,
# old single layer "hidden_layer_sizes": (40,),
},
]
testing_params = [params[-1]]
activations = ["identity", "logistic", "tanh", "relu"]
learning_rate_inits = [0.01, 0.001, 0.02]
# progress reporting init
progress = Progress(
"[progress.description]{task.description}",
BarColumn(),
"[progress.percentage]{task.percentage:>3.0f}%",
"{task.completed} of {task.total}",
)
with progress:
# adjust len if needed
task_layers = progress.add_task("[red]Building…", total=len(params) * 2)
for best_params in params:
learn_rate = best_params["learning_rate_inits"]
acti = best_params["activations"]
hidd = best_params["hidden_layer_sizes"]
row = execute_and_report(learn_rate, acti, hidd)
reports = reports.append(row, ignore_index=True)
count += 1
progress.advance(task_layers)
# ------- switch up datasets: put in the 10-feature dataframe
train_x, train_y, test_x, test_y = utils.load_tracks_xyz(
buckets="discrete", extractclass=("album", "type"), splits=2, small=True
).values()
# feature to reshape
label_encoders = dict()
column2encode = [
("track", "duration"),
("track", "interest"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
le.fit(test_x[col])
train_x[col] = le.fit_transform(train_x[col])
test_x[col] = le.fit_transform(test_x[col])
label_encoders[col] = le
le = LabelEncoder()
le.fit(train_y)
test_y = le.fit_transform(test_y)
train_y = le.fit_transform(train_y)
class_name = ("album", "type")
# rerun neural networks
for best_params in params:
learn_rate = best_params["learning_rate_inits"]
acti = best_params["activations"]
hidd = best_params["hidden_layer_sizes"]
row = execute_and_report(learn_rate, acti, hidd)
reports = reports.append(row, ignore_index=True)
count += 1
progress.advance(task_layers)
# end switching up datasets -------
# results
print(reports.sort_values(by=["accuracy %", "F1 weighted %"], ascending=False))
print(f"I have built {count} neural networks")