-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasic_KNN_noout.py
141 lines (116 loc) · 3.88 KB
/
basic_KNN_noout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay, plot_confusion_matrix
from sklearn.preprocessing import LabelEncoder
import utils
# FUNCTION
def draw_confusion_matrix(Clf, X, y):
titles_options = [
("Confusion matrix, without normalization", None),
("KNN confusion matrix", "true"),
]
for title, normalize in titles_options:
disp = plot_confusion_matrix(Clf, X, y, cmap="Purples", normalize=normalize)
disp.ax_.set_title(title)
plt.show()
def conf_mat_disp(confusion_matrix, disp_labels):
disp = ConfusionMatrixDisplay(
confusion_matrix=confusion_matrix, display_labels=disp_labels
)
disp.plot(cmap="Purples")
# DATASET
# DATASET
# df = utils.load_tracks(
# "data/tracks.csv", dummies=True, buckets="continuous", fill=True, outliers=True
# )
dfs = utils.load_tracks_xyz(
buckets="continuous", splits=2, extractclass=("album", "type")
)
column2drop = [
("track", "language_code"),
]
dfs["train_x"].drop(column2drop, axis=1, inplace=True)
dfs["test_x"].drop(column2drop, axis=1, inplace=True)
# print(["album", "type"].unique())
# feature to reshape
label_encoders = dict()
column2encode = [
("album", "listens"),
("track", "license"),
("album", "comments"),
("album", "date_created"),
("album", "favorites"),
("artist", "comments"),
("artist", "date_created"),
("artist", "favorites"),
("track", "comments"),
("track", "date_created"),
("track", "duration"),
("track", "favorites"),
("track", "interest"),
("track", "listens"),
]
for col in column2encode:
le = LabelEncoder()
dfs["train_x"][col] = le.fit_transform(dfs["train_x"][col])
dfs["test_x"][col] = le.fit_transform(dfs["test_x"][col])
label_encoders[col] = le
le1 = LabelEncoder()
dfs["train_y"] = le1.fit_transform(dfs["train_y"])
dfs["test_y"] = le1.fit_transform(dfs["test_y"])
label_encoders[("album", "type")] = le1
"""
# Create KNN Object.
knn = KNeighborsClassifier(
n_neighbors=2, p=1
) # valori migliori dalla gridsearch n = 2, p=1, levarli per avere la standard
# Create x and y variables.
x = df.drop(columns=[("album", "type")])
y = df[("album", "type")]
# Split data into training and testing.
X_train, X_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size=0.25)
print(X_train.shape, X_test.shape)
# Training the model.
knn.fit(X_train, y_train)
# Apply the knn on the training set
print("Apply the KNN on the training set: \n")
y_pred = knn.predict(X_train)
print("Accuracy %s" % accuracy_score(y_train, y_pred))
print("F1-score %s" % f1_score(y_train, y_pred, average=None))
print(classification_report(y_train, y_pred))
# Apply the KNN on the test set and evaluate the performance
print("Apply the KNN on the test set and evaluate the performance: \n")
Y_pred = knn.predict(X_test)
print("Accuracy %s" % accuracy_score(y_test, Y_pred))
print("F1-score %s" % f1_score(y_test, Y_pred, average=None))
print(classification_report(y_test, Y_pred))
draw_confusion_matrix(knn, X_test, y_test)
#""" """ROC Curve""" """
lb = LabelBinarizer()
lb.fit(y_test)
lb.classes_.tolist()
fpr = dict()
tpr = dict()
roc_auc = dict()
by_test = lb.transform(y_test)
by_pred = lb.transform(Y_pred)
for i in range(4):
fpr[i], tpr[i], _ = roc_curve(by_test[:, i], by_pred[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
roc_auc = roc_auc_score(by_test, by_pred, average=None)
plt.figure(figsize=(8, 5))
for i in range(4):
plt.plot(
fpr[i],
tpr[i],
label="%s ROC curve (area = %0.2f)" % (lb.classes_.tolist()[i], roc_auc[i]),
)
plt.plot([0, 1], [0, 1], "k--")
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.title("KNN Roc-Curve")
plt.xlabel("False Positive Rate", fontsize=10)
plt.ylabel("True Positive Rate", fontsize=10)
plt.tick_params(axis="both", which="major", labelsize=12)
plt.legend(loc="lower right", fontsize=7, frameon=False)
plt.show()
"""