-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathred_list.r
246 lines (197 loc) · 10.5 KB
/
red_list.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#Rscript
###############################
## Red List Index (IUCN) ##
###############################
#####Packages :
# raster
# sp
library(redlistr)
#####Load arguments
args <- commandArgs(trailingOnly = TRUE)
#####Import the S2 data
if (length(args) < 1) {
stop("This tool needs at least 1 argument")
}else {
source(args[1])
grid <- as.numeric(args[2])
data_raster_1 <- args[3]
rasterheader_1 <- args[4]
data_raster_2 <- args[5]
rasterheader_2 <- args[6]
data_1 <- args[7]
data_2 <- args[8]
raster_1 <- args[9]
raster_2 <- args[10]
}
################################################################################
## DEFINE PARAMETERS FOR DATASET TO BE PROCESSED ##
################################################################################
if (data_raster_1 == "" && raster_1 == "") {
#Create a directory where to unzip your folder of data
dir.create("data_dir_1")
unzip(data_1, exdir = "data_dir_1")
# Path to raster
data_raster <- list.files("data_dir_1/results/Reflectance", pattern = "_Refl")
input_image_file <- file.path("data_dir_1/results/Reflectance", data_raster[1])
input_header_file <- file.path("data_dir_1/results/Reflectance", data_raster[2])
} else if (data_raster_1 != "") {
input_image_file <- file.path(getwd(), data_raster_1, fsep = "/")
input_header_file <- file.path(getwd(), rasterheader_1, fsep = "/")
} else if (raster_1 != "") {
input_image_file <- raster_1
}
if (data_raster_2 == "" && data_2 != "" ) {
#Create a directory where to unzip your folder of data
dir.create("data_dir_2")
unzip(data_2, exdir = "data_dir_2")
# Path to raster
data_raster <- list.files("data_dir_2/results/Reflectance", pattern = "_Refl")
input_image_file2 <- file.path("data_dir_2/results/Reflectance", data_raster[1])
input_header_file2 <- file.path("data_dir_2/results/Reflectance", data_raster[2])
} else if (data_raster_2 != "" && data_2 == "" && raster_2 == "") {
input_image_file <- file.path(getwd(), data_raster_1, fsep = "/")
input_header_file <- file.path(getwd(), rasterheader_1, fsep = "/")
input_image_file2 <- file.path(getwd(), data_raster_2, fsep = "/")
input_header_file2 <- file.path(getwd(), rasterheader_2, fsep = "/")
} else if (data_raster_2 == "" && data_2 == "" && raster_2 != "") {
input_image_file <- raster_1
input_image_file2 <- raster_2
}
################################################################################
## PROCESS IMAGE ##
################################################################################
if (fs::path_ext(input_image_file) == "shp" || fs::path_ext(input_image_file) == "kml") {
input_image_file <- rgdal::readOGR(input_image_file)
}else {
input_image_file <- raster::raster(input_image_file)
}
#system.file("extdata", "example_distribution_2000.tif",
# package = "redlistr"))
### Plotting out data
## Basic information for the data
# r Calculate area of rasters
area_1 <- redlistr::getArea(input_image_file)
### Creating binary ecosystem raster
#An additional parameter in `getArea` is to specify which class to count if your
#raster has more than one value (multiple ecosystem data stored within a single
#file). However, for further functions, it may be wise to convert your raster
#into a binary format, containing only information for your target ecosystem.
#First, if you do not know the value which represents your target ecosystem, you
#can plot the ecosystem out, and use the `raster::click` function. Once you know
#the value which represents your target ecosystem, you can create a new raster
#object including only that value
if (data_raster_2 != "" || data_2 != "" || raster_2 != "") {
## Assessing Criterion A
# The IUCN Red List of Ecosystems criterion A requires estimates of the magnitude of
#change over time. This is typically calculated over a 50 year time period (past,
#present or future) or against a historical baseline ([Bland et al., 2016](https://portals.iucn.org/library/sites/library/files/documents/2016-010.pdf)).
#The first step towards acheiving this change estimate over a fixed time frame is
#to assess the amount of change observed in your data.
if (fs::path_ext(input_image_file2) == "shp" || fs::path_ext(input_image_file2) == "kml") {
input_image_file2 <- rgdal::readOGR(input_image_file2)
}else {
input_image_file2 <- raster::raster(input_image_file2)
}
#system.file("extdata", "example_distribution_2017.tif",
# package = "redlistr"))
### Plotting out data
## Basic information for the data
png("Area_1.png")
plot(input_image_file, col = "grey30", legend = FALSE, main = "Canopy Distribution")
png("Area_2.png")
plot(input_image_file2, col = "grey30", legend = FALSE, main = "Canopy Distribution")
area_2 <- redlistr::getArea(input_image_file2)
### Area change
area_lost <- redlistr::getAreaLoss(area_1, area_2)
area_text <- paste0("Area loss between your 2 data ", area_lost, " Km2")
### Rate of change
#These rates of decline allow the use of two or more data points to extrapolate
#to the full 50 year timeframe required in an assessment.
decline_stats <- redlistr::getDeclineStats(area_1, area_2, 2000, 2017,
methods = c("ARD", "PRD", "ARC"))
decline_text <- paste0("Rates of decline ", decline_stats)
#Now, it is possible to extrapolate, using only two estimates of an ecosystems"
#area, to the full 50 year period required for a Red List of Ecosystems
#assessment.
extrapolated_area <- redlistr::extrapolateEstimate(area_1, year.t1 = 2000,
ARD = decline_stats$ARD,
PRD = decline_stats$PRD,
ARC = decline_stats$ARC,
nYears = 50)
extrapo_text <- paste0("Extrapolation ", extrapolated_area)
#If we were to use the Proportional Rate of Decline (PRD) for our example
#assessment, our results here will be suitiable for criterion A2b (Any 50 year
#period), and the percent loss of area is:
predicted_percent_loss <- (extrapolated_area$A.PRD.t3 - area_1) / area_1 * 100
pploss_text <- paste0("Predicted area loss ", predicted_percent_loss, "%")
##write tinto a text file those different results as a repport
report <- paste0("\n\n", area_text, "\t", decline_text, "\t", extrapo_text, "\t", pploss_text)
write.table(report, "report.txt")
}else {
## Assessing Criterion B (distribution size)
#Criterion B utilizes measures of the geographic distribution of an ecosystem
#type to identify ecosystems that are at risk from catastrophic disturbances.
#This is done using two standardized metrics: the extent of occurrence (EOO) and
#the area of occupancy (AOO)
### Subcriterion B1 (calculating EOO)
#For subcriterion B1, we will need to calculate the extent of occurrence (EOO) of our
#data. We begin by creating the minimum convex polygon enclosing all occurrences
#of our focal ecosystem.
eoo_polygon <- redlistr::makeEOO(input_image_file)
png("polygon.png")
plot(eoo_polygon)
plot(input_image_file, add = TRUE, col = "dark green", legend = FALSE)
#Calculating EOO area
eoo_area <- redlistr::getAreaEOO(eoo_polygon)
### Subcriterion B2 (calculating AOO)
#For subcriterion B2, we will need to calculate the number of 10x10 km grid cells
#occupied by our distribution. We begin by creating the appopriate grid cells.
aoo_grid <- redlistr::makeAOOGrid(input_image_file, grid.size = grid,
min.percent.rule = FALSE)
png("grid.png")
plot(aoo_grid)
plot(input_image_file, add = TRUE, col = "dark green", legend = FALSE)
#Finally, we can use the created grid to calculate the AOO
n_aoo <- length(aoo_grid)
tab <- as.data.frame(eoo_area)
tab$aoo <- n_aoo
write.table(tab, file = "report.txt", sep = "\t", dec = ".", na = " ", row.names = FALSE, col.names = TRUE)
#### Grid uncertainty functions
#`gridUncertainty` simply moves the AOO grid systematically (with a
#small random movement around fixed points), and continues searching for a minimum
#AOO until additional shifts no longer produce improved results.
gu_results <- redlistr::gridUncertainty(input_image_file, grid * 10, #!!! not sure why and for what need to come back here!!!!
n.AOO.improvement = 5,
min.percent.rule = FALSE)
gu_results <- as.data.frame(gu_results)
png("gu_plot.png")
plot(gu_results)
plot(input_image_file, add = TRUE, col = "dark green", legend = FALSE)
#### One percent rule
#In addition to the size of the grids used (which will be different for species
#assessments), there is also an option in the `makeAOOGrid` function to specify
#whether a minimum of percent of the grid cell area must be occupied before they
#are included as an AOO grid. Typically, this is only used in very special cases
#for ecosystems with highly skewed distribution of patch sizes ([Bland et al., 2016](https://portals.iucn.org/library/sites/library/files/documents/2016-010.pdf)).
#Here, we demonstrate the differences between including, or not including the one
#percent rule:
#r One percent grid, fig.width=7, fig.height=7}
aoo_grid_one_percent <- redlistr::makeAOOGrid(input_image_file, grid.size = grid,
min.percent.rule = TRUE, percent = 1)
png("aoo_grid_percent.png")
plot(aoo_grid_one_percent)
plot(input_image_file, add = TRUE, col = "dark green", legend = FALSE)
#There is an additional parameter - `percent` - which adjusts the threshold for
#the AOO grids. Here, we set it to 0.1% to demonstrate its functionalities.
#{r AOO Grid 0.1percent, fig.width=7, fig.height=7}
aoo_grid_min_percent <- redlistr::makeAOOGrid(input_image_file, grid.size = grid,
min.percent.rule = TRUE, percent = 0.1)
png("aoo_grid_min_percent.png")
par(mfrow = c(2, 2))
plot(aoo_grid, main = 'AOO grid without one percent rule')
plot(input_image_file, add = TRUE, col = "dark green", legend = FALSE)
plot(aoo_grid_one_percent, main = 'AOO grid with one percent rule')
plot(input_image_file, add = TRUE, col = "dark green", legend = FALSE)
plot(aoo_grid_min_percent, main = 'AOO grid with one percent rule at 0.1%')
plot(input_image_file, add = TRUE, col = "dark green", legend = FALSE)
}