-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathutils.py
390 lines (308 loc) · 15.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import cv2
import json
import numpy as np
import tensorflow as tf
from PIL import Image
import matplotlib.pyplot as plt
#############################################
# Tensorflow utils
#############################################
def reset_graph():
"""Closes the current default session and resets the graph."""
sess = tf.get_default_session()
if sess:
sess.close()
tf.reset_default_graph()
def load_checkpoint(sess, checkpoint_path, ras_only=False, perceptual_only=False, gen_model_pretrain=False,
train_entire=False):
if ras_only:
load_var = {var.op.name: var for var in tf.global_variables() if 'raster_unit' in var.op.name}
elif perceptual_only:
load_var = {var.op.name: var for var in tf.global_variables() if 'VGG16' in var.op.name}
elif train_entire:
load_var = {var.op.name: var for var in tf.global_variables()
if 'discriminator' not in var.op.name
and 'raster_unit' not in var.op.name
and 'VGG16' not in var.op.name
and 'beta1' not in var.op.name
and 'beta2' not in var.op.name
and 'global_step' not in var.op.name
and 'Entire' not in var.op.name
}
else:
if gen_model_pretrain:
load_var = {var.op.name: var for var in tf.global_variables()
if 'discriminator' not in var.op.name
and 'raster_unit' not in var.op.name
and 'VGG16' not in var.op.name
and 'beta1' not in var.op.name
and 'beta2' not in var.op.name
# and 'global_step' not in var.op.name
}
else:
load_var = tf.global_variables()
restorer = tf.train.Saver(load_var)
if not ras_only:
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
model_checkpoint_path = ckpt.model_checkpoint_path
else:
model_checkpoint_path = checkpoint_path
print('Loading model %s' % model_checkpoint_path)
restorer.restore(sess, model_checkpoint_path)
snapshot_step = model_checkpoint_path[model_checkpoint_path.rfind('-') + 1:]
return snapshot_step
def create_summary(summary_writer, summ_map, step):
for summ_key in summ_map:
summ_value = summ_map[summ_key]
summ = tf.summary.Summary()
summ.value.add(tag=summ_key, simple_value=float(summ_value))
summary_writer.add_summary(summ, step)
summary_writer.flush()
def save_model(sess, saver, model_save_path, global_step):
checkpoint_path = os.path.join(model_save_path, 'p2s')
print('saving model %s.' % checkpoint_path)
print('global_step %i.' % global_step)
saver.save(sess, checkpoint_path, global_step=global_step)
#############################################
# Utils for basic image processing
#############################################
def normal(x, width):
return (int)(x * (width - 1) + 0.5)
def draw(f, width=128):
x0, y0, x1, y1, x2, y2, z0, z2, w0, w2 = f
x1 = x0 + (x2 - x0) * x1
y1 = y0 + (y2 - y0) * y1
x0 = normal(x0, width * 2)
x1 = normal(x1, width * 2)
x2 = normal(x2, width * 2)
y0 = normal(y0, width * 2)
y1 = normal(y1, width * 2)
y2 = normal(y2, width * 2)
z0 = (int)(1 + z0 * width // 2)
z2 = (int)(1 + z2 * width // 2)
canvas = np.zeros([width * 2, width * 2]).astype('float32')
tmp = 1. / 100
for i in range(100):
t = i * tmp
x = (int)((1-t) * (1-t) * x0 + 2 * t * (1-t) * x1 + t * t * x2)
y = (int)((1-t) * (1-t) * y0 + 2 * t * (1-t) * y1 + t * t * y2)
z = (int)((1-t) * z0 + t * z2)
w = (1-t) * w0 + t * w2
cv2.circle(canvas, (y, x), z, w, -1)
return 1 - cv2.resize(canvas, dsize=(width, width))
def rgb_trans(split_num, break_values):
slice_per_split = split_num // 8
break_values_head, break_values_tail = break_values[:-1], break_values[1:]
results = []
for split_i in range(8):
break_value_head = break_values_head[split_i]
break_value_tail = break_values_tail[split_i]
slice_gap = float(break_value_tail - break_value_head) / float(slice_per_split)
for slice_i in range(slice_per_split):
slice_val = break_value_head + slice_gap * slice_i
slice_val = int(round(slice_val))
results.append(slice_val)
return results
def get_colors(color_num):
split_num = (color_num // 8 + 1) * 8
r_break_values = [0, 0, 0, 0, 128, 255, 255, 255, 128]
g_break_values = [0, 0, 128, 255, 255, 255, 128, 0, 0]
b_break_values = [128, 255, 255, 255, 128, 0, 0, 0, 0]
r_rst_list = rgb_trans(split_num, r_break_values)
g_rst_list = rgb_trans(split_num, g_break_values)
b_rst_list = rgb_trans(split_num, b_break_values)
assert len(r_rst_list) == len(g_rst_list)
assert len(b_rst_list) == len(g_rst_list)
rgb_color_list = [(r_rst_list[i], g_rst_list[i], b_rst_list[i]) for i in range(len(r_rst_list))]
return rgb_color_list
#############################################
# Utils for testing
#############################################
def save_seq_data(save_root, save_filename, strokes_data, init_cursors, image_size, round_length, init_width):
seq_save_root = os.path.join(save_root, 'seq_data')
os.makedirs(seq_save_root, exist_ok=True)
save_npz_path = os.path.join(seq_save_root, save_filename + '.npz')
np.savez(save_npz_path, strokes_data=strokes_data, init_cursors=init_cursors,
image_size=image_size, round_length=round_length, init_width=init_width)
def image_pasting_v3_testing(patch_image, cursor, image_size, window_size_f, pasting_func, sess):
"""
:param patch_image: (raster_size, raster_size), [0.0-BG, 1.0-stroke]
:param cursor: (2), in size [0.0, 1.0)
:param window_size_f: (), float32, [0.0, image_size)
:return: (image_size, image_size), [0.0-BG, 1.0-stroke]
"""
cursor_pos = cursor * float(image_size)
pasted_image = sess.run(pasting_func.pasted_image,
feed_dict={pasting_func.patch_canvas: np.expand_dims(patch_image, axis=-1),
pasting_func.cursor_pos_a: cursor_pos,
pasting_func.image_size_a: image_size,
pasting_func.window_size_a: window_size_f})
# (image_size, image_size, 1), [0.0-BG, 1.0-stroke]
pasted_image = pasted_image[:, :, 0]
return pasted_image
def draw_strokes(data, save_root, save_filename, input_img, image_size, init_cursor, infer_lengths, init_width,
cursor_type, raster_size, min_window_size,
sess,
pasting_func=None,
save_seq=False, draw_order=False):
"""
:param data: (N_strokes, 9): flag, x1, y1, x2, y2, r2, s2
:return:
"""
canvas = np.zeros((image_size, image_size), dtype=np.float32) # [0.0-BG, 1.0-stroke]
canvas_color = np.zeros((image_size, image_size, 3), dtype=np.float32)
canvas_color_with_moving = np.zeros((image_size, image_size, 3), dtype=np.float32)
frames = []
cursor_idx = 0
stroke_count = len(data)
color_rgb_set = get_colors(stroke_count) # list of (3,) in [0, 255]
color_idx = 0
for round_idx in range(len(infer_lengths)):
round_length = infer_lengths[round_idx]
cursor_pos = init_cursor[cursor_idx] # (2)
cursor_idx += 1
prev_width = init_width
prev_scaling = 1.0
prev_window_size = raster_size # (1)
for round_inner_i in range(round_length):
stroke_idx = np.sum(infer_lengths[:round_idx]).astype(np.int32) + round_inner_i
curr_window_size = prev_scaling * prev_window_size
curr_window_size = np.maximum(curr_window_size, min_window_size)
curr_window_size = np.minimum(curr_window_size, image_size)
pen_state = data[stroke_idx, 0]
stroke_params = data[stroke_idx, 1:] # (8)
x1y1, x2y2, width2, scaling2 = stroke_params[0:2], stroke_params[2:4], stroke_params[4], stroke_params[5]
x0y0 = np.zeros_like(x2y2) # (2), [-1.0, 1.0]
x0y0 = np.divide(np.add(x0y0, 1.0), 2.0) # (2), [0.0, 1.0]
x2y2 = np.divide(np.add(x2y2, 1.0), 2.0) # (2), [0.0, 1.0]
widths = np.stack([prev_width, width2], axis=0) # (2)
stroke_params_proc = np.concatenate([x0y0, x1y1, x2y2, widths], axis=-1) # (8)
next_width = stroke_params[4]
next_scaling = stroke_params[5]
next_window_size = next_scaling * curr_window_size
next_window_size = np.maximum(next_window_size, min_window_size)
next_window_size = np.minimum(next_window_size, image_size)
prev_width = next_width * curr_window_size / next_window_size
prev_scaling = next_scaling
prev_window_size = curr_window_size
f = stroke_params_proc.tolist() # (8)
f += [1.0, 1.0]
gt_stroke_img = draw(f) # (raster_size, raster_size), [0.0-stroke, 1.0-BG]
gt_stroke_img_large = image_pasting_v3_testing(1.0 - gt_stroke_img, cursor_pos, image_size,
curr_window_size,
pasting_func, sess) # [0.0-BG, 1.0-stroke]
if pen_state == 0:
canvas += gt_stroke_img_large # [0.0-BG, 1.0-stroke]
if draw_order:
color_rgb = color_rgb_set[color_idx] # (3) in [0, 255]
color_idx += 1
color_rgb = np.reshape(color_rgb, (1, 1, 3)).astype(np.float32)
color_stroke = np.expand_dims(gt_stroke_img_large, axis=-1) * (1.0 - color_rgb / 255.0)
canvas_color_with_moving = canvas_color_with_moving * np.expand_dims((1.0 - gt_stroke_img_large),
axis=-1) + color_stroke # (H, W, 3)
if pen_state == 0:
canvas_color = canvas_color * np.expand_dims((1.0 - gt_stroke_img_large),
axis=-1) + color_stroke # (H, W, 3)
# update cursor_pos based on hps.cursor_type
new_cursor_offsets = stroke_params[2:4] * (curr_window_size / 2.0) # (1, 6), patch-level
new_cursor_offset_next = new_cursor_offsets
# important!!!
new_cursor_offset_next = np.concatenate([new_cursor_offset_next[1:2], new_cursor_offset_next[0:1]], axis=-1)
cursor_pos_large = cursor_pos * float(image_size)
stroke_position_next = cursor_pos_large + new_cursor_offset_next # (2), large-level
if cursor_type == 'next':
cursor_pos_large = stroke_position_next # (2), large-level
else:
raise Exception('Unknown cursor_type')
cursor_pos_large = np.minimum(np.maximum(cursor_pos_large, 0.0), float(image_size - 1)) # (2), large-level
cursor_pos = cursor_pos_large / float(image_size)
frames.append(canvas.copy())
canvas = np.clip(canvas, 0.0, 1.0)
canvas = np.round((1.0 - canvas) * 255.0).astype(np.uint8) # [0-stroke, 255-BG]
os.makedirs(save_root, exist_ok=True)
save_path = os.path.join(save_root, save_filename)
canvas_img = Image.fromarray(canvas, 'L')
canvas_img.save(save_path, 'PNG')
if save_seq:
seq_save_root = os.path.join(save_root, 'seq', save_filename[:-4])
os.makedirs(seq_save_root, exist_ok=True)
for len_i in range(len(frames)):
frame = frames[len_i]
frame = np.round((1.0 - frame) * 255.0).astype(np.uint8)
save_path = os.path.join(seq_save_root, str(len_i) + '.png')
frame_img = Image.fromarray(frame, 'L')
frame_img.save(save_path, 'PNG')
if draw_order:
order_save_root = os.path.join(save_root, 'order')
order_comp_save_root = os.path.join(save_root, 'order-compare')
os.makedirs(order_save_root, exist_ok=True)
os.makedirs(order_comp_save_root, exist_ok=True)
canvas_color = 255 - np.round(canvas_color * 255.0).astype(np.uint8)
canvas_color_img = Image.fromarray(canvas_color, 'RGB')
save_path = os.path.join(order_save_root, save_filename)
canvas_color_img.save(save_path, 'PNG')
canvas_color_with_moving = 255 - np.round(canvas_color_with_moving * 255.0).astype(np.uint8)
# comparsions
rows = 2
cols = 3
plt.figure(figsize=(5 * cols, 5 * rows))
plt.subplot(rows, cols, 1)
plt.title('Input', fontsize=12)
# plt.axis('off')
input_rgb = input_img
plt.imshow(input_rgb)
# plt.subplot(rows, cols, 2)
# plt.title('GT', fontsize=12)
# # plt.axis('off')
# gt_rgb = np.stack([gt_img for _ in range(3)], axis=2)
# plt.imshow(gt_rgb)
plt.subplot(rows, cols, 2)
plt.title('Sketch', fontsize=12)
# plt.axis('off')
canvas_rgb = np.stack([canvas for _ in range(3)], axis=2)
plt.imshow(canvas_rgb)
plt.subplot(rows, cols, 4)
plt.title('Sketch Order', fontsize=12)
# plt.axis('off')
plt.imshow(canvas_color)
plt.subplot(rows, cols, 5)
plt.title('Sketch Order with moving', fontsize=12)
# plt.axis('off')
plt.imshow(canvas_color_with_moving)
plt.subplot(rows, cols, 6)
plt.title('Order', fontsize=12)
plt.axis('off')
img_h = 5
img_w = 10
color_array = np.zeros([len(color_rgb_set) * img_h, img_w, 3], dtype=np.uint8)
for i in range(len(color_rgb_set)):
color_array[i * img_h: i * img_h + img_h, :, :] = color_rgb_set[i]
plt.imshow(color_array)
comp_save_path = os.path.join(order_comp_save_root, save_filename)
plt.savefig(comp_save_path)
plt.close()
# plt.show()
def update_hyperparams(model_params, model_base_dir, model_name, infer_dataset):
with tf.gfile.Open(os.path.join(model_base_dir, model_name, 'model_config.json'), 'r') as f:
data = json.load(f)
ignored_keys = ['image_size_small', 'image_size_large', 'z_size', 'raster_perc_loss_layer', 'raster_loss_wk',
'decreasing_sn', 'raster_loss_weight']
for name in model_params._hparam_types.keys():
if name not in data and name not in ignored_keys:
raise Exception(name, 'not in model_config.json')
assert data['resize_method'] == 'AREA'
data['data_set'] = infer_dataset
fix_list = ['use_input_dropout', 'use_output_dropout', 'use_recurrent_dropout']
for fix in fix_list:
data[fix] = (data[fix] == 1)
pop_keys = ['gpus', 'image_size', 'resolution_type', 'loop_per_gpu', 'stroke_num_loss_weight_end',
'perc_loss_fuse_type',
'early_pen_length', 'early_pen_loss_type', 'early_pen_loss_weight',
'increase_start_steps', 'perc_loss_layers', 'sn_loss_type', 'photo_prob_end_step',
'sup_weight', 'gan_weight', 'base_raster_loss_base_type']
for pop_key in pop_keys:
if pop_key in data.keys():
data.pop(pop_key)
model_params.parse_json(json.dumps(data))
return model_params