forked from QueensGambit/CrazyAra
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode.h
812 lines (675 loc) · 27.8 KB
/
node.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*
CrazyAra, a deep learning chess variant engine
Copyright (C) 2018 Johannes Czech, Moritz Willig, Alena Beyer
Copyright (C) 2019-2020 Johannes Czech
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* @file: node.h
* Created on 28.08.2019
* @author: queensgambit
*
* Class which stores the statistics of all nodes and in the search tree.
*/
#ifndef NODE_H
#define NODE_H
#include <iostream>
#include <mutex>
#include <unordered_map>
#include <blaze/Math.h>
#include "stateobj.h"
#include "agents/config/searchsettings.h"
#include "nodedata.h"
using blaze::HybridVector;
using blaze::DynamicVector;
using namespace std;
using ChildIdx = uint_fast16_t;
using Budget = uint_fast16_t;
struct NodeAndIdx {
Node* node;
uint16_t childIdx;
NodeAndIdx(Node* node, uint16_t childIdx) :
node(node), childIdx(childIdx) {}
};
using Trajectory = vector<NodeAndIdx>;
using HashMap = unordered_map<Key, weak_ptr<Node>> ;
// wrapper for unordered_map with a mutex for thread safe access
struct MapWithMutex {
mutex mtx;
HashMap hashTable;
~MapWithMutex() {
}
};
struct NodeSplit {
ChildIdx firstArg;
ChildIdx secondArg;
Budget firstBudget;
Budget secondBudget;
inline void only_first(ChildIdx firstArg, uint_fast16_t budget) {
this->firstArg = firstArg;
firstBudget = budget;
secondBudget = 0;
}
};
struct NodeAndBudget {
Node* node;
uint_fast16_t budget;
StateObj* curState;
Trajectory curTrajectory;
NodeAndBudget(Node* node, uint_fast16_t budget, StateObj* state) :
node(node), budget(budget), curState(state) {}
};
class Node
{
private:
mutex mtx;
DynamicVector<float> policyProbSmall;
vector<Action> legalActions;
Key key;
// singular values
// valueSum stores the sum of all incoming value evaluations
double valueSum;
unique_ptr<NodeData> d;
#ifdef MCTS_STORE_STATES
unique_ptr<StateObj> state;
#endif
uint32_t realVisitsSum;
// identifiers
uint16_t pliesFromNull;
uint16_t numberParentNodes;
bool isTerminal;
bool isTablebase;
bool hasNNResults;
bool sorted;
public:
/**
* @brief Node Primary constructor which is used when expanding a node during search
* @param State Corresponding state object
* @param searchSettings Pointer to the searchSettings
*/
Node(StateObj *state,
const SearchSettings* searchSettings);
/**
* @brief ~Node Destructor which frees memory and the board position
*/
~Node();
/**
* @brief get_current_u_values Calucates and returns the current u-values for this node
* @return DynamicVector<float>
*/
DynamicVector<float> get_current_u_values(const SearchSettings* searchSettings);
/**
* @brief get_child_node Returns the child node at the given index.
* A nullptr is returned if the child node wasn't expanded yet and no check is done if the childIdx is smaller than
* @param childIdx Index for the next child node to select
* @return child node
*/
Node* get_child_node(ChildIdx childIdx);
ChildIdx select_child_node(const SearchSettings* searchSettings);
/**
* @brief select_child_nodes Selects multiple nodes at once
* @param searchSettings Search settings struct
* @param budget How many simulations are still available
* @return Struct on how the selection was split
*/
NodeSplit select_child_nodes(const SearchSettings* searchSettings, uint_fast16_t budget);
/**
* @brief revert_virtual_loss_and_update Reverts the virtual loss and updates the Q-value and visits
* @param value New value to update Q
*
* Example:
* Q-value update on 2nd iteration
* 0. Starting point: Initialized with e.g. 0.5 after first backup, vl = virtual loss
* Q_0 = 0.5, n_0 = 1; vl = 1
* 1. Apply virtual loss
* Q_1 = (Q_0 * n_0 - vl) / (n_0 + vl)
* = (0.5 * 1 - 1) / (1 + 1)
* = - 0.25
* 2. Increase visits by virtual loss
* n_1 = n_0 + vl
* = 1 + 1
* = 2
* 3. Revert virtual loss
* Q_2 = (Q_1 * n_1 + vl) / (n_1 - vl)
* = (-0.25 * 2 + 1) / (2 - 1)
* = 0.5
* 4. Update Q-value by new value (e.g. val = 0.7)
* Q_3 = (Q_2 * (n_1 - vl) + val) / (n_1)
* = (0.5 * (2 - 1) + 0.7) / 2
* = 0.6
*
* Note step 3. & 4. ca be expressed as a single update based on Q_1:
* 3. & 4.: Revert value and update
* Q_3 = (Q_1 * n_1 + vl + val) / n_1
* = (-0.25 * 2 + 1 + 0.7) / 2
* = 0.6
*
* @param childIdx Index to the child node to update
* @param value Specifies the value evaluation to backpropagate
* @param solveForTerminal Decides if the terminal solver will be used
*/
template<bool freeBackup>
void revert_virtual_loss_and_update(ChildIdx childIdx, float value, float virtualLoss, bool solveForTerminal)
{
lock();
// decrement virtual loss counter
update_virtual_loss_counter<false>(childIdx, virtualLoss);
valueSum += value;
++realVisitsSum;
if (d->childNumberVisits[childIdx] == virtualLoss) {
// set new Q-value based on return
// (the initialization of the Q-value was by Q_INIT which we don't want to recover.)
d->qValues[childIdx] = value;
}
else {
// revert virtual loss and update the Q-value
assert(d->childNumberVisits[childIdx] != 0);
d->qValues[childIdx] = (double(d->qValues[childIdx]) * d->childNumberVisits[childIdx] + virtualLoss + value) / d->childNumberVisits[childIdx];
assert(!isnan(d->qValues[childIdx]));
}
if (virtualLoss != 1) {
d->childNumberVisits[childIdx] -= size_t(virtualLoss) - 1;
d->visitSum -= size_t(virtualLoss) - 1;
}
if (freeBackup) {
++d->freeVisits;
}
if (solveForTerminal) {
solve_for_terminal(childIdx);
}
unlock();
}
/**
* @brief revert_virtual_loss Reverts the virtual loss for a target node
* @param childIdx Index to the child node to update
*/
void revert_virtual_loss(ChildIdx childIdx, float virtualLoss);
bool is_playout_node() const;
/**
* @brief is_blank_root_node Returns true if the node is a blank root node with no visits
* @return True if initialized but no visits else false
*/
bool is_blank_root_node() const;
bool is_solved() const;
bool has_forced_win() const;
Action get_action(ChildIdx childIdx) const;
Node* get_child_node(ChildIdx childIdx) const;
shared_ptr<Node> get_child_node_shared(ChildIdx childIdx) const;
vector<shared_ptr<Node>>::const_iterator get_node_it_begin() const;
vector<shared_ptr<Node>>::const_iterator get_node_it_end() const;
bool is_terminal() const;
bool has_nn_results() const;
float get_value() const;
/**
* @brief get_value_display Return value evaluation which can be used for logging
* Warning: Must be called with d != nullptr
* @return value() or pre-defined constant
*/
float get_value_display() const;
double get_value_sum() const;
uint32_t get_real_visits() const;
void apply_virtual_loss_to_child(ChildIdx childIdx, uint_fast32_t virtualLoss);
void increment_no_visit_idx();
void fully_expand_node();
Key hash_key() const;
size_t get_number_child_nodes() const;
void prepare_node_for_visits();
/**
* @brief sort_nodes_by_probabilities Sorts all child nodes in ascending order based on their probability value
*/
void sort_moves_by_probabilities();
/**
* @brief make_to_root Makes the node to the current root node by setting its parent to a nullptr
*/
void make_to_root();
/**
* @brief get_visits Returns the sum of all visited child nodes with virtual loss applied
* @return uint32_t
*/
uint32_t get_visits() const;
/**
* @brief get_real_visits Returns visits for given child idx without virtual loss applied
* @param childIdx Child index
* @return uint32_t
*/
uint32_t get_real_visits(ChildIdx childIdx) const;
void lock();
void unlock();
/**
* @brief apply_dirichlet_noise_to_prior_policy Applies dirichlet noise of strength searchSettings->dirichletEpsilon with
* alpha value searchSettings->dirichletAlpha to the prior policy of the root node. This encourages exploration of nodes with initially low
* low activations.
*/
void apply_dirichlet_noise_to_prior_policy(const SearchSettings* searchSettings);
/**
* @brief apply_temperature_to_prior_policy Applies a given temperature value on the root nodes policy distribution.
* For a temperature < 1, the distribution is "sharpened" and
* for a temperature > 1, the distribution is "flattened"
* @param temperature Temperature value (should be non-zero positive value)
*/
void apply_temperature_to_prior_policy(float temperature);
float get_action_value() const;
SearchSettings* get_search_settings() const;
uint16_t get_no_visit_idx() const;
bool is_fully_expanded() const;
DynamicVector<float>& get_policy_prob_small();
void set_probabilities_for_moves(const float *data, bool mirrorPolicy);
void apply_softmax_to_policy();
/**
* @brief enhance_moves Calls enhance_checks & enhance captures if the searchSetting suggests it and applies a renormilization afterwards
* @param pos Current board position
*/
void enhance_moves(const SearchSettings* searchSettings);
void set_value(float value);
uint16_t main_child_idx_for_parent() const;
/**
* @brief add_new_node_to_tree Checks if the given position already exists in the Hash map.
* If so, connect the parent to this node. Otherwise create a new node.
* @param mapWithMutex Hash map with mutex
* @param newState Corresponding state
* @param childIdx Child index
* @param searchSettings Search Settings struct
* @param transposition Return true, if the transposition request was successfull, else false, i.e. a new node was added
* @return the newly added node
*/
Node* add_new_node_to_tree(MapWithMutex* mapWithMutex, StateObj* newState, ChildIdx childIdx, const SearchSettings* searchSettings, bool& transposition);
void add_transposition_parent_node();
/**
* @brief max_prob Returns the maximum policy value
* @return float
*/
float max_policy_prob();
/**
* @brief max_q_child Returns the child index with the highest Q-value
* @return size_t
*/
ChildIdx max_q_child() const;
/**
* @brief max_visits_child Returns the child index with the most visits
* @return size_t
*/
ChildIdx max_visits_child() const;
/**
* @brief update_value_eval Returns the updated state evaluation based on the Q-value of the most visited child node
* @return float
*/
float updated_value_eval() const;
std::vector<Action> get_legal_actions() const;
int get_checkmate_idx() const;
/**
* @brief get_mcts_policy Returns the final policy after the mcts search which is used for move selection, in most cases argmax(mctsPolicy).
* Depending on the searchSettings, Q-values will be taken into account for creating this.
* @param mctsPolicy Output of the final mcts policy after search
* @param bestMoveIdx Index for the best move
* @param qValueWeight Decides if Q-values are taken into account
* @param qVetoDelta Describes how much better the highest Q-Value has to be to replace the candidate move with the highest visit count
*/
void get_mcts_policy(DynamicVector<double>& mctsPolicy, ChildIdx& bestMoveIdx, float qValueWeight, float qVetoDelta) const;
/**
* @brief get_principal_variation Traverses the tree using the get_mcts_policy() function until a leaf or terminal node is found.
* The moves a are pushed into the pv vector.
* @param pv Vector in which moves will be pushed.
* @param qValueWeight Decides if Q-values are taken into account
* @param qVetoDelta Describes how much better the highest Q-Value has to be to replace the candidate move with the highest visit count
*/
void get_principal_variation(vector<Action>& pv, float qValueWeight, float qVetoDelta);
/**
* @brief is_root_node Checks if the current node is the root node
* @return true if root node else false
*/
bool is_root_node() const;
DynamicVector<uint32_t> get_child_number_visits() const;
uint32_t get_child_number_visits(ChildIdx childIdx) const;
void enable_has_nn_results();
uint16_t plies_from_null() const;
bool is_tablebase() const;
NodeType get_node_type() const;
uint16_t get_end_in_ply() const;
uint32_t get_free_visits() const;
void init_node_data(size_t numberNodes);
void init_node_data();
void mark_as_terminal();
bool is_sorted() const;
/**
* @brief get_q_value Returns the Q-value for the given child index
* @param idx Child Index
* @return Q-value
*/
float get_q_value(ChildIdx idx) const;
/**
* @brief get_q_values Returns the Q-values for all child nodes
* @return Q-values
*/
DynamicVector<float> get_q_values() const;
/**
* @brief set_q_value Sets a Q-value for a given child index
* @param idx Child index
* @param value value to set
*/
void set_q_value(ChildIdx idx, float value);
/**
* @brief get_best_q_idx Return the child index with the highest Q-value
* @return Index of child with maximum Q-value
*/
ChildIdx get_best_q_idx() const;
/**
* @brief get_q_idx_over_thresh Returns all child node which coresponding Q-values are greater than qThresh
* @param qThresh Threshold
* @return vector of child indices
*/
vector<ChildIdx> get_q_idx_over_thresh(float qThresh);
/**
* @brief print_node_statistics
* @param pos Position object related to the current position.
* If the position is given as "nulltptr" the moves will be displayed in UCI notation instead of SAN.
* @param customOrdering Optional custom ordering of how the moves shall be displayed (e.g. according to the MCTS policy after search).
* If an empty vector is given, it will use the current ordering of the child nodes (by default according to the prior policy).
*/
void print_node_statistics(const StateObj* pos, const vector<size_t>& customOrdering) const;
/**
* @brief get_node_count Returns the number of nodes in the subgraph of this nodes without counting terminal simulations
* @return uint32_t
*/
uint32_t get_node_count() const;
bool is_transposition() const;
/**
* @brief decrement_number_parents Decrements the counter of the number of parent nodes.
* This is needed for memory clearing to avoid double free.
*/
void decrement_number_parents();
double get_q_sum(ChildIdx childIdx, float virtualLoss) const;
template<bool increment>
void update_virtual_loss_counter(ChildIdx childIdx, float virtualLoss)
{
if (increment) {
d->virtualLossCounter[childIdx] += virtualLoss;
}
else {
assert(d->virtualLossCounter[childIdx] != 0);
d->virtualLossCounter[childIdx] -= virtualLoss;
}
}
uint8_t get_virtual_loss_counter(ChildIdx childIdx) const;
bool has_transposition_child_node();
bool is_transposition_return(double myQvalue) const;
void set_checkmate_idx(ChildIdx childIdx) const;
/**
* @brief was_inspected Returns true if the node has already been inspected for e.g. checks.
* @return bool
*/
bool was_inspected();
/**
* @brief set_as_inspected Sets the inspected variable to true
*/
void set_as_inspected();
#ifdef MCTS_STORE_STATES
StateObj* get_state() const;
/**
* @brief set_auxiliary_outputs Sets the auxiliary outputs of the neural network to the state object
* @param auxiliaryOutputs Auxiliary outputs of the neural network for the corresponding state
*/
void set_auxiliary_outputs(const float* auxiliaryOutputs);
#endif
uint32_t get_number_of_nodes() const;
private:
/**
* @brief reserve_full_memory Reserves memory for all available child nodes
*/
void reserve_full_memory();
/**
* @brief check_for_terminal Checks if the given board position is a terminal node and updates isTerminal
* @param state Current board position for this node
*/
void check_for_terminal(StateObj* state);
#ifdef MCTS_TB_SUPPORT
/**
* @brief check_for_tablebase_wdl Checks if the given board position is a tablebase position and
* updates isTerminal and the value evaluation
* @param state Current board position for this node
*/
void check_for_tablebase_wdl(StateObj* state);
void mark_as_tablebase();
#endif
/**
* @brief solve_for_terminal Tries to solve the current node to be a forced win, loss or draw.
* The main idea is based on the paper "Exact-Win Strategy for Overcoming AlphaZero" by Chen et al.
* https://www.researchgate.net/publication/331216459_Exact-Win_Strategy_for_Overcoming_AlphaZero
* The solver uses the current backpropagating child node as well as all available child nodes.
* @param childNode Child nodes which backpropagates the value
* @return true, if the node type of the current node was modified
*/
bool solve_for_terminal(ChildIdx childIdx);
/**
* @brief solved_win Checks if the current node is a solved win based on the given child node
* @param childNode Child nodes which backpropagates the value
* @return true for WIN else false
*/
bool solved_win(const Node* childNode) const;
/**
* @brief solved_draw Checks if the current node is a solved draw based on the given child node
* and all available child node
* @param childNode Child nodes which backpropagates the value
* @return true for DRAW else false
*/
bool solved_draw(const Node* childNode) const;
/**
* @brief at_least_one_drawn_child Checks if this node has only DRAWN or WON child nodes and at least one DRAWN child
* @return true if one DRAWN child exits and other child nodes are either won or DRAWN else false
*/
bool at_least_one_drawn_child() const;
/**
* @brief only_won_child_nodws Checks if this node has only WON child nodes
* @return true if only WON child nodes exist else false
*/
bool only_won_child_nodes() const;
/**
* @brief only_child_nodes_of_one_kind Check if all expanded child nodes are of the same kind.
* @return true if only child nodes of type <nodeType> exist else false
*/
template <NodeType nodeType>
bool only_child_nodes_of_one_kind() const
{
for (auto it = d->childNodes.begin(); it != d->childNodes.end(); ++it) {
const Node* childNode = it->get();
if (childNode->d->nodeType != nodeType) {
return false;
}
}
return true;
}
/**
* @brief solved_loss Checks if the current node is a solved loss based on the given child node
* @param childNode Child nodes which backpropagates the value
* @return true for LOSS else false
*/
bool solved_loss(const Node* childNode) const;
/**
* @brief mark_as_loss Marks the current node as a loss
*/
void mark_as_loss();
/**
* @brief mark_as_draw Marks the current node as a draw
*/
void mark_as_draw();
/**
* @brief mark_as_win Marks the current node as a winning node
*/
void mark_as_win();
#ifdef MCTS_TB_SUPPORT
/**
* @brief solve_tb_win Checks if the current node is a solved tablebase win based on the given child node
* @param childNode Child nodes which backpropagates the value
* @return true for TB_WIN else false
*/
bool solve_tb_win(const Node* childNode) const;
/**
* @brief solved_tb_draw Checks if the current node is a solved tablebase draw based on the given child node
* and all available child node
* @param childNode Child nodes which backpropagates the value
* @return true for TB_DRAW else false
*/
bool solved_tb_draw(const Node* childNode) const;
/**
* @brief solved_tb_loss Checks if the current node is a solved tablebase loss based on the given child node
* @param childNode Child nodes which backpropagates the value
* @return true for TB_LOSS else false
*/
bool solved_tb_loss(const Node* childNode) const;
/**
* @brief only_won_tb_child_nodws Checks if this node has only WON child nodes
* @return true if only WIN_TB child nodes exist else false
*/
bool only_won_tb_child_nodes() const;
/**
* @brief mark_as_tb_loss Marks the current node as a tablebase loss
*/
void mark_as_tb_loss();
/**
* @brief mark_as_tb_draw Marks the current node as a tablebase draw
*/
void mark_as_tb_draw();
/**
* @brief mark_as_tb_win Marks the current node as a tablebase win
*/
void mark_as_tb_win();
#endif
/**
* @brief define_end_ply_for_solved_terminal Calculates the number of plies in which the terminal will be reached.
* The solving is based on the current backpropagating child nodes as well as all available child nodes.
* @param childNode Child nodes which backpropagates the value
*/
void define_end_ply_for_solved_terminal(const Node* childNode);
/**
* @brief update_solved_terminal Updates member variables for a solved terminal node
* @param childNode Child nodes which backpropagates the value
* @param targetValue Target value which will be set to be the new node value
*/
template <int targetValue>
void update_solved_terminal(const Node* childNode, uint_fast16_t childIdx);
/**
* @brief mcts_policy_based_on_wins Sets all known winning moves in a given policy to 1 and all
* remaining moves to 0.
* @param mctsPolicy MCTS policy which will be set
*/
void mcts_policy_based_on_wins(DynamicVector<double>& mctsPolicy) const;
/**
* @brief mcts_policy_based_on_losses Sets the policy entry which delays the mate the longest to 1 and remaining values to 0.
* @param mctsPolicy MCTS policy which will be set
*/
void mcts_policy_based_on_losses(DynamicVector<double>& mctsPolicy) const;
/**
* @brief prune_losses_in_mcts_policy Sets all known losing moves in a given policy to 0 in case
* the node is not known to be losing.
* @param mctsPolicy MCTS policy which will be set
*/
void prune_losses_in_mcts_policy(DynamicVector<double>& mctsPolicy) const;
// /**
// * @brief mark_enhaned_moves Fills the isCheck and isCapture vector according to the legal moves
// * @param pos Current board positions
// */
// void mark_enhanced_moves(const Board* pos, const SearchSettings* searchSettings);
/**
* @brief disable_move Disables a given move for futher visits by setting the corresponding Q-value to -INT_MAX
* and the move probability to 0.
* @param childIdxForParent Index for the move which will be disabled
*/
void disable_action(size_t childIdxForParent);
};
/**
* @brief get_best_action_index Returns the best move index of all available moves based on the mcts policy
* or solved wins / draws / losses.
* @param curNode Current node
* @param fast If true, then the argmax(childNumberVisits) is returned for unsolved nodes
* @param qValueWeight Decides if qValues are taken into account
* @param qVetoDelta Describes how much better the highest Q-Value has to be to replace the candidate move with the highest visit count
* @return Index for best move and child node
*/
size_t get_best_action_index(const Node* curNode, bool fast, float qValueWeight, float qVetoDelto);
typedef float (* vFunctionValue)(Node* node);
DynamicVector<float> retrieve_dynamic_vector(const vector<Node*>& childNodes, vFunctionValue func);
/**
* @brief get_current_cput Calculates the current cpuct value factor for this node based on the total node visits
* @return float
*/
float get_current_cput(float visits, const SearchSettings* searchSettings);
/**
* @brief get_current_u_divisor Calculates the current u-initialization-divisor factor for this node based on the total node visits
* @return float
*/
float get_current_u_divisor(float numberVisits, float uMin, float uInit, float uBase);
/**
* @brief node_type_to_string Returns a const char* representation for the enum nodeType
* @param nodeType Node type
* @return const char*
*/
const char* node_type_to_string(enum NodeType nodeType);
/**
* @brief flip_node_type Flips the node type value (e.g. WIN into LOSS)
* @param nodeType Node type
* @return flipped node type
*/
NodeType flip_node_type(const enum NodeType nodeType);
/**
* @brief is_terminal_value Checks if the given value corresponds to a WIN, DRAW or LOSS
* @param value Node value evaluation
* @return bool
*/
bool is_terminal_value(float value);
/**
* @brief backup_collision Iteratively removes the virtual loss of the collision event that occurred
* @param rootNode Root node of the tree
* @param virtualLoss Virtual loss value
* @param trajectory Trajectory on how to get to the given collision
*/
void backup_collision(float virtualLoss, const Trajectory& trajectory);
float get_transposition_q_value(uint_fast32_t transposVisits, double transposQValue, double masterQValue);
/**
* @brief backup_value Iteratively backpropagates a value prediction across all of the parents for this node.
* The value is flipped at every ply.
* @param rootNode Root node of the tree
* @param value Value evaluation to backup, this is the NN eval in the general case or can be from a terminal node
* @param virtualLoss Virtual loss value
* @param trajectory Trajectory on how to get to the given value eval
* @param solveForTerminal Decides if the terminal solver will be used
*/
template <bool freeBackup>
void backup_value(float value, float virtualLoss, const Trajectory& trajectory, bool solveForTerminal) {
double targetQValue = 0;
for (auto it = trajectory.rbegin(); it != trajectory.rend(); ++it) {
if (targetQValue != 0) {
const uint_fast32_t transposVisits = it->node->get_real_visits(it->childIdx);
if (transposVisits != 0) {
const double transposQValue = -it->node->get_q_sum(it->childIdx, virtualLoss) / transposVisits;
value = get_transposition_q_value(transposVisits, transposQValue, targetQValue);
}
}
#ifndef MCTS_SINGLE_PLAYER
value = -value;
#endif
freeBackup ? it->node->revert_virtual_loss_and_update<true>(it->childIdx, value, virtualLoss, solveForTerminal) :
it->node->revert_virtual_loss_and_update<false>(it->childIdx, value, virtualLoss, solveForTerminal);
if (it->node->is_transposition()) {
targetQValue = it->node->get_value();
}
else {
targetQValue = 0;
}
}
}
/**
* @brief is_transposition_verified Checks if the node and state object are a verified position, i.e. same move counter and node has nn results
* @param node Node object
* @param state State object
* @return True, for verification, else false
*/
bool is_transposition_verified(const Node* node, const StateObj* state);
#endif // NODE_H