forked from stanford-msande228/winter23
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
161 lines (129 loc) · 6.38 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import pandas as pd
import scipy.special
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_predict
from sklearn.base import clone
def fetch_data_generator(*, data, semi_synth=False, simple_synth=False,
scale=1, true_f=None, max_depth=3):
'''
data: one of {'401k', 'criteo', 'welfare', 'poverty', 'charitable', 'star'}
semi_synth: whether to impute outcomes from a synthetic model
simple_synth: if outcome model should be simple based on the `true_f` function or fitted from data
scale: how much noise to add for synthetic data generation
true_f: a simple conditional expectation function for the outcome for semi synthetic data
max_depth: if CEF for outcome is fitted from data, we will fit a random forest of this max_depth
'''
if data == '401k':
abtest = False
file = "https://raw.githubusercontent.com/CausalAIBook/MetricsMLNotebooks/main/data/401k.csv"
data = pd.read_csv(file)
y = data['net_tfa'].values
D = data['e401'].values
X = data.drop(['e401', 'p401', 'a401', 'tw', 'tfa', 'net_tfa', 'tfa_he',
'hval', 'hmort', 'hequity',
'nifa', 'net_nifa', 'net_n401', 'ira',
'dum91', 'icat', 'ecat', 'zhat',
'i1', 'i2', 'i3', 'i4', 'i5', 'i6', 'i7',
'a1', 'a2', 'a3', 'a4', 'a5'], axis=1)
mask = (X['inc'] > 0) & (X['inc'] >= np.percentile(X['inc'], 1))
mask &= (X['inc'] <= np.percentile(X['inc'], 99))
X, D, y = X[mask], D[mask], y[mask]
groups = None
elif data == 'criteo':
abtest = True
df = pd.read_csv('./criteo-uplift-v2.1.csv')
y = df['visit'].values
D = df['treatment'].values
X = df.drop(['treatment', 'conversion', 'visit', 'exposure'], axis=1)
groups = None
elif data == 'welfare':
abtest = True
df = pd.read_csv('./welfarenolabel3.csv', na_values=-999)
continuous = ['hrs1', 'income', 'rincome', 'age', 'polviews',
'educ', 'earnrs', 'sibs', 'childs', 'occ80', 'prestg80', 'indus80',
'res16', 'reg16', 'family16', 'parborn', 'maeduc', 'degree',
'hompop', 'babies', 'preteen', 'teens', 'adults']
categorical = ['partyid', 'wrkstat', 'wrkslf', 'marital', 'race', 'mobile16', 'sex', 'born']
df = df[['y', 'w'] + continuous + categorical]
df = df.dropna()
df = df[~((df['polviews']>4) & (df['polviews'] < 5))]
df = pd.get_dummies(df, columns=categorical, drop_first=True)
y = df['y'].values
D = df['w'].values
X = df.drop(['y', 'w'], axis=1)
groups = None
elif data == 'poverty':
abtest = True
df = pd.read_csv('https://raw.githubusercontent.com/gsbDBI/ExperimentData/master/Poverty/carvalho2016.csv', na_values=-999)
df = df.dropna()
y = df['outcome.correct.ans.per.second'].values
D = df['treatment'].values
X = df.drop(["outcome.correct.ans.per.second","outcome.num.correct.ans",
'outcome.response.time', 'treatment'], axis=1)
groups = None
elif data == 'charitable':
abtest = True
df = pd.read_csv('https://raw.githubusercontent.com/gsbDBI/ExperimentData/master/Charitable/ProcessedData/charitable_withdummyvariables.csv', na_values=-999)
df = df.loc[df['treat_ratio2']!=1]
df = df.loc[df['treat_ratio3']!=1]
df = df.drop(['treat_ratio2', 'treat_ratio3', 'treat_size25', 'treat_size50',
'treat_size100', 'treat_sizeno', 'treat_askd1', 'treat_askd2', 'treat_askd3',
'out_amountgive', 'out_changeamtgive'], axis=1)
df = df.dropna()
y = df['out_gavedum'].values
D = df['treatment'].values
X = df.drop(['treatment', 'out_gavedum'], axis=1)
groups = None
elif data == 'star':
abtest = True
URL = 'https://raw.githubusercontent.com/gsbDBI/ExperimentData/master/Project%20STAR/STAR_Students.tab'
df = pd.read_csv(URL, delimiter='\t')
Xcols = ['gender', 'race', 'birthmonth', 'birthyear',
'gkschid', 'gksurban', 'gktgen',
'gktrace', 'gkthighdegree', 'gktcareer',
'gktyears', 'gkfreelunch', 'gkrepeat',
'gkspeced', 'gkspecin']
Dcols = ['gkclasstype']
ycols = ['gktreadss', 'gktmathss']
Gcols = ['gktchid']
df = df[Xcols + Dcols + ycols + Gcols]
df = df.dropna()
y = np.sum(df[ycols].values, axis=1) # total of reading and math scores
D = 1.0 * (df[Dcols].values.flatten() == 1) # is small class
X = df[Xcols]
groups = df[Gcols[0]].values
else:
raise AttributeError("Dataset name is invalid!")
# shuffle data
inds = np.arange(X.shape[0])
np.random.shuffle(inds)
X, D, y = X.iloc[inds], D[inds], y[inds]
if groups is not None:
groups = groups[inds]
# for semi-synthetic data generation
if semi_synth:
if simple_synth:
def gen_epsilon(n):
std = np.std(true_f(D, X))
return np.random.normal(0, scale * std, size=n)
def get_data():
return X, D, true_f(D, X) + gen_epsilon(X.shape[0]), groups
else:
true_model = RandomForestRegressor(min_samples_leaf=50, max_depth=max_depth)
true_model.fit(np.hstack([D.reshape(-1, 1), X]), y)
def true_f(D, X):
return true_model.predict(np.hstack([D.reshape(-1, 1), X]))
true_residuals = y - cross_val_predict(clone(true_model), X, y, cv=5)
def gen_epsilon(n):
return scale * np.random.choice(true_residuals, size=n)
def get_data():
return X, D, true_f(D, X) + gen_epsilon(X.shape[0]), groups
else:
def get_data():
return X, D, y, groups
def true_f(D, X):
return np.zeros(D.shape[0])
def true_cate(X):
return true_f(np.ones(X.shape[0]), X) - true_f(np.zeros(X.shape[0]), X)
return get_data, abtest, true_f, true_cate