-
Notifications
You must be signed in to change notification settings - Fork 0
/
Reinit.py
executable file
·245 lines (187 loc) · 7.7 KB
/
Reinit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import numpy as np
import cv2
import sys
from sklearn import cluster
from skimage import data, img_as_float
from skimage.segmentation import (morphological_chan_vese)
from scipy.spatial import ConvexHull
from PIL import Image, ImageDraw
from sklearn.metrics import jaccard_similarity_score # jaccard_score
import operator
import time
from matplotlib import pyplot as plt
np.set_printoptions(threshold=sys.maxsize)
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
orb = cv2.KAZE_create(threshold=0.0001, nOctaves=4, nOctaveLayers=4, diffusivity=cv2.KAZE_DIFF_PM_G2)
# startime = time.time()
# print(time.time() - startime)
def store_evolution_in(lst):
def _store(x):
lst.append(np.copy(x))
return _store
def adjust_gamma(image, gamma=1.0):
invGamma = 1.0 / gamma
table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")
return cv2.LUT(image, table)
def contrast_enhance(img1):
lab = cv2.cvtColor(img1, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8, 8))
cl = clahe.apply(l)
limg = cv2.merge((cl, a, b))
final = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
return final
def create(imgg, Buffer, Buffer_images):
img2 = cv2.cvtColor(imgg, cv2.COLOR_BGR2GRAY)
# img2 = cv2.equalizeHist(img2)
kp2, des2 = orb.detectAndCompute(img2, None)
points = np.array([[[1, 1]]])
for i in range(13):
img1 = Buffer_images[i]
ii = i
kp1, des1 = orb.detectAndCompute(img1, None)
matches1 = bf.match(des1, des2)
matches1 = sorted(matches1, key=lambda x: x.distance)
matches = matches1[:50]
good_new = np.array([[[1, 1]]])
good_old = np.array([[[1, 1]]])
for i in range(0, len(matches)):
# print('VLEZE VO TOCKI')
x = np.float32(kp1[matches[i].queryIdx].pt[0])
y = np.float32(kp1[matches[i].queryIdx].pt[1])
good_new = np.append(good_new, [[[x, y]]], axis=0)
x = np.float32(kp2[matches[i].trainIdx].pt[0])
y = np.float32(kp2[matches[i].trainIdx].pt[1])
good_old = np.append(good_old, [[[x, y]]], axis=0)
good_new = np.delete(good_new, 0, 0)
good_old = np.delete(good_old, 0, 0)
try:
M, mask = cv2.findHomography(good_old, good_new, cv2.RANSAC, ransacReprojThreshold=25) # 15
mask = np.array(mask, dtype=bool)
mask = np.invert(mask)
newX = np.ma.array(good_old, mask=np.column_stack((mask, mask)))
newX = newX[~newX.mask]
newX1 = newX.reshape(-1, 1, 2)
except:
print(ii)
points = np.append(points, newX1, axis=0)
points, index = np.unique(points, axis=0, return_index=True)
new1 = points.reshape(-1, 2)
dbscan = cluster.DBSCAN(eps=50, min_samples=20)
X = new1
dbscan.fit(X)
if hasattr(dbscan, 'labels_'):
y_pred = dbscan.labels_.astype(np.int)
else:
y_pred = dbscan.predict(X)
# l1 = X[y_pred == 0, 0]
l1 = np.asarray(X[y_pred == 0, 0], dtype=np.uint32)
# l2 = X[y_pred == 0, 1]
l2 = np.asarray(X[y_pred == 0, 1], dtype=np.uint32)
ll1 = len(l1)
ll2 = len(l2)
if ll1 > 5 and ll1 > 5:
points1 = np.asarray([l1, l2]).transpose()
hull = ConvexHull(points1, incremental=True)
polygon = []
for x, y in points1[hull.vertices]:
polygon.append((x, y))
img = Image.new('L', (imgg.shape[1], imgg.shape[0]), 0)
ImageDraw.Draw(img).polygon(polygon, outline=1, fill=1)
maskSNAKE = np.array(img)
frame = imgg.copy()
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) # YCR_CB)
a = hsv[:, :, 0]
image = img_as_float(a)
init_ls = maskSNAKE
ker = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 9))
init_ls = cv2.dilate(init_ls, ker, iterations=1)
evolution = []
callback = store_evolution_in(evolution)
ls1 = morphological_chan_vese(image, 20, init_level_set=init_ls, lambda1=2, lambda2=0.4, smoothing=0,
iter_callback=callback)
# ls1 = ls
ls = ls1.astype(np.uint8)
kernel = np.ones((16, 16), np.uint8)
kernel1 = np.ones((8, 8), np.uint8)
erosion = cv2.morphologyEx(ls, cv2.MORPH_OPEN, kernel)
erosion = cv2.erode(erosion, kernel1, iterations=1)
# img1 = Image.fromarray(imgg, 'RGB')
_, contours, hierarchy = cv2.findContours(erosion, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_TC89_L1) # contours, hierarchy
su1 = 0
su2 = 0
# needs to be restructured from here
if len(contours) > 0:
img_true = np.array(ls1).ravel()
img_pred = np.array(erosion).ravel()
iou = jaccard_similarity_score(img_true, img_pred) # jaccard_score(img_true, img_pred)
print('ENTERED CONTOURS')
a = sorted(contours, key=lambda contour: cv2.contourArea(contour), reverse=True)
# print(a)
# print(cv2.contourArea(a[0]))
maxContour = cv2.contourArea(a[0])
maxContourData = a[0]
mask = np.zeros_like(erosion)
if maxContour > 1:
cv2.fillPoly(mask, [maxContourData], 1)
su1 = sum(mask[(l2, l1)])
else:
iou = None
if len(contours) > 1:
maxContour1 = cv2.contourArea(a[1])
maxContourData1 = a[1]
mask1 = np.zeros_like(erosion)
if maxContour1 > 1:
cv2.fillPoly(mask1, [maxContourData1], 1)
su2 = sum(mask1[(l2, l1)])
if su1 >= su2 and su1 > 20:
c = maxContourData
c = c.astype(np.float32)
elif su2 >= su1 and su2 > 20:
c = maxContourData1
c = c.astype(np.float32)
else:
c = None
# to here
# template = img2
if c is not None:
maxx = np.int0(np.amax(c[:, 0, 0]))
minx = np.int0(np.amin(c[:, 0, 0]))
maxy = np.int0(np.amax(c[:, 0, 1]))
miny = np.int0(np.amin(c[:, 0, 1]))
template = img2 * maskSNAKE
template = template[miny:maxy, minx:maxx]
clusterSize = ll1
kp3, des3 = orb.detectAndCompute(template, None)
# Sum of strongest 20
pp = sorted(kp3, key=operator.attrgetter('response'), reverse=True)
sum3 = sum(node.response for node in pp[:20])
if len(kp3) > 20:
pp = sorted(kp3, key=operator.attrgetter('response'), reverse=True)
sum3 = sum(node.response for node in pp[:20])
if ll1 > 0.9 * Buffer["7"][2]:
n = 7
name = 'b' + str(n) + '.jpg'
cv2.imwrite(name, template)
Buffer_images[n] = template
Buffer[str(n)] = [len(kp3), sum3, clusterSize]
elif ll1 > 0.8 * Buffer["8"][2]:
n = 8
name = 'b' + str(n) + '.jpg'
cv2.imwrite(name, template)
Buffer_images[n] = template
Buffer[str(n)] = [len(kp3), sum3, clusterSize]
elif ll1 > 0.7 * Buffer["9"][2]:
n = 9
name = 'b' + str(n) + '.jpg'
cv2.imwrite(name, template)
Buffer_images[n] = template
Buffer[str(n)] = [len(kp3), sum3, clusterSize]
else:
clusterSize = 0
return c, iou, Buffer, Buffer_images
else:
c = None
iou = None
return c, iou, Buffer, Buffer_images