-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlotResults.m
425 lines (363 loc) · 13.5 KB
/
PlotResults.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
% A script to display the results of the last execution of MagnetLoc.
% MagnetLoc stores its results in 'log.txt' and the meaningful input data
% in inputLog.mat (among which robot parameters and noise variances).
% Graphs displayed:
% Figure 1:
% - The path calculated by odometry only (red).
% - The path estimated by the Kalman filter (blue).
% - The locations of the magnets which have been detected (black dots).
% - The estimated locations of the detected magnets in absolute frame
% using the measurement (that's variable oMeasMagnet in the program).
% Figure 2:
% - Speed and rotation speed, as estimated using the encoders.
% Figure 3:
% - Estimated error standard deviations (extracted directly from
% the diagonal of P, hence in absolute frame.
% Figure 4:
% - Estimated error standard deviations in robot frame.
% Figure 5:
% - Mahalanobis distances calculated with the magnet closest to
% the measurement point (candidate magnet) in blue.
% - Mahalanobis distances calculated with the four nearest neighbors
% of the candidate magnet in red.
% - Mahalanobis distance threshold used in the program (black line).
% Figure 6:
% - Estimated x, y, theta as functions of time.
% Figure 7:
% - Number of magnets detected at each time instant.
% Figure 8:
% - Raw sensor measurements as a function of the curvilinear abscissa
% (distance traveled by point M). The vertical axis represents the
% state of each Reed sensor. A vertical line indicates a closed
% sensor (a sensor which detects a magnet).
% - You may comment out this graph when you don't need it anymore
% (when you're done estimating the measurement noise).
function PlotResults
% Load the inputs to the problem (robot charateristics + tuning +
% speed and rotation speed + measurements. They have been saved by
% MagnetLoc in inputLog.mat.
if ~exist('inputLog.mat')
disp('File inputLog.mat not found. Did you run MagnetLoc first?');
return
end
if ~exist('log.txt')
disp('File log.txt not found. Did you run MagnetLoc first?');
return
end
load inputLog ...
nbReedSensors samplingPeriod xSpacing ySpacing ...
sensorReadings Qgamma mahaThreshold
% Load the results calculated by MagnetLoc, logged in log.txt.
fid = fopen('log.txt','r');
firstline = fgetl(fid);
numvars = numel(strread(firstline,'%s')); %#ok<DSTRRD>
fgetl(fid); %<-- Skip the second line
data = textscan(fid,repmat('%f',1,numvars)); %#ok<NASGU>
% The "unused variable" warning has been suppressed: variable "data" is
% used in the "eval" instruction, but code analyzer does not see it.
% Next instruction sets all variables whose name are on the first line
% of the file, here calcPhase, t, x, y, theta, P11...P33, U1, U2, Y1, Y2.
eval(['[' strrep(firstline,' ',',') '] = deal(data{:});']) ;
fclose(fid);
% Prepare vectors and matrices
nbRes = length(t) ;
nbPeriods = sum(calcPhase==1) ;
U = zeros(2,nbPeriods) ;
Xodo = zeros(3,nbPeriods+1) ;
% Reconstruct the inputs. Suppress lines that are non prediction, since
% their values have been set to zero conventionally in the logs.
% Keeping those would be impractical when displaying velocities.
U(1,:) = U1(find(calcPhase==1)) ;
U(2,:) = U2(find(calcPhase==1)) ;
tOdo = t(find(calcPhase==1));
% Calculate the measured positions of the magnets in the absolute frame
% and the magnets closest to these measured positions for display.
% Do this only when calcPhase = 2 (measurement).
nbMeasurementPhases = sum(calcPhase==2) ;
estMagnetPos = zeros(2,nbMeasurementPhases) ;
exactMagnetPos = zeros(2,nbMeasurementPhases) ;
j = 0 ;
for i = 1 : nbRes
if calcPhase(i) == 2
j = j+1 ;
oTm = [ cos(theta(i)) , -sin(theta(i)) , x(i) ;
sin(theta(i)) , cos(theta(i)) , y(i) ;
0 , 0 , 1 ] ;
oEstimatedMagnet = oTm * [ y1(i) ; y2(i) ; 1 ] ;
oExactMagnetPos = round( oEstimatedMagnet ./ [xSpacing ; ySpacing ; 1] ) .* [xSpacing ; ySpacing ; 1] ;
estMagnetPos(:,j) = oEstimatedMagnet(1:2) ;
exactMagnetPos(:,j) = oExactMagnetPos(1:2) ;
end
end
% Compute odometry only estimated path
Xodo(:,1) = [x(1) ; y(1) ; theta(1)] ;
for i = 1 : nbPeriods
Xodo(:,i+1) = Xodo(:,i) + ...
[ U(1,i)*cos(Xodo(3,i)) ;
U(1,i)*sin(Xodo(3,i)) ;
U(2,i) ] ;
end
travDistance = zeros(1,nbPeriods) ;
for i = 2 : nbPeriods
travDistance(i) = travDistance(i-1) + U(1,i) ;
end
% Plot robot path, Kalman fiter estimation and odometry only estimation
figure;
plot( x,y , 'b' , 'LineWidth', 2 ) ;
hold on ;
plot( Xodo(1,:), Xodo(2,:) , 'r' ) ;
zoom on ; grid on; axis('equal');
title('Estimated path EKF (blue) and odometry (red)');
xlabel('x (mm)');
ylabel('y (mm)');
% On top of the path, indicate estimated and real magnet positions.
hold on;
plot( estMagnetPos(1,:), estMagnetPos(2,:) , 'g+' ) ;
hold on;
plot( exactMagnetPos(1,:), exactMagnetPos(2,:) , 'k.' ) ;
% Plot odometry-estimated speed and rotation speed
figure;
subplot(2,1,1);
plot( tOdo,U(1,:)/samplingPeriod , 'LineWidth',2 );
xlabel('t (s)')
ylabel('v (mm/s)');
title('Odometry-estimated speed');
zoom on ; grid on;
subplot(2,1,2);
plot( tOdo,U(2,:)*180/pi/samplingPeriod , 'LineWidth',2 );
xlabel('t (s)')
ylabel('w (deg/s)' , 'LineWidth',2 );
title('Odometry-estimated rotation speed');
zoom on ; grid on;
% Plot estimated variances in absolute reference frame
sigx = sqrt(P11) ;
sigy = sqrt(P22) ;
sigtheta = sqrt(P33) ;
tRes = t( find(calcPhase==3) ) ;
figure;
subplot(3,1,1);
maximum = max(sigx) ;
for k=1:numel(tRes)
line([tRes(k) tRes(k)],[0 maximum],'Color','g','LineStyle',':' ,...
'LineWidth',2 );
end
hold on ;
plot( t,sigx , 'LineWidth',2 );
xlabel('t (s)') ;
ylabel('sigma_x (mm)') ;
title('Estimated standard deviations in absolute ref. frame');
zoom on ; grid on;
subplot(3,1,2);
maximum = max(sigy) ;
for k=1:numel(tRes)
line([tRes(k) tRes(k)],[0 maximum],'Color','g','LineStyle',':' , ...
'LineWidth',2 );
end
hold on ;
plot( t,sigy , 'LineWidth',2 );
xlabel('t (s)') ;
ylabel('sigma_y (mm)');
zoom on ; grid on;
subplot(3,1,3);
maximum = max(sigtheta*180/pi) ;
for k=1:numel(tRes)
line([tRes(k) tRes(k)],[0 maximum],'Color','g','LineStyle',':' ,...
'LineWidth',2 );
end
hold on ;
plot( t,sigtheta*180/pi , 'LineWidth',2 );
xlabel('t (s)') ;
ylabel('sigma_{theta} (deg.)');
zoom on ; grid on;
% Calculate covariance matrix in frame Rm
msigx = zeros(1,length(t)) ;
msigy = zeros(1,length(t)) ;
msigtheta = zeros(1,length(t)) ;
for i = 1 : length(t)
m_Omega_o = [ cos(theta(i)) , sin(theta(i)) , 0 ;
-sin(theta(i)) , cos(theta(i)) , 0 ;
0 , 0 , 1 ] ;
oP = [ P11(i) , P12(i) , P13(i) ;
P12(i) , P22(i) , P23(i) ;
P13(i) , P23(i) , P33(i) ] ;
mP = m_Omega_o * oP * m_Omega_o.' ;
msigx(i) = sqrt( mP(1,1) ) ;
msigy(i) = sqrt( mP(2,2) ) ;
msigtheta(i) = sqrt( mP(3,3) ) ;
end
% Plot variances in robot frame.
figure;
subplot(3,1,1);
maximum = max(msigx) ;
for k=1:numel(tRes)
line([tRes(k) tRes(k)],[0 maximum],'Color','g','LineStyle',':' ,...
'LineWidth',2 );
end
hold on ;
plot( t,msigx , 'LineWidth',2 );
xlabel('t (s)') ;
ylabel('sigma_x (mm)');
title('Estimated standard deviations in robot frame');
zoom on ; grid on;
subplot(3,1,2);
maximum = max(msigy) ;
for k=1:numel(tRes)
line([tRes(k) tRes(k)],[0 maximum],'Color','g','LineStyle',':' , ...
'LineWidth',2 );
end
hold on ;
plot( t,msigy , 'LineWidth',2 );
xlabel('t (s)') ;
ylabel('sigma_y (mm)');
zoom on ; grid on;
subplot(3,1,3);
maximum = max(msigtheta*180/pi) ;
for k=1:numel(tRes)
line([tRes(k) tRes(k)],[0 maximum],'Color','g','LineStyle',':' ,...
'LineWidth',2 );
end
hold on ;
plot( t,msigtheta*180/pi , 'LineWidth',2 );
xlabel('t (s)') ;
ylabel('sigma_{theta} (deg.)');
zoom on ; grid on;
% Calculate Mahalanobis distances, including for magnets that are the
% closest neighbors of the magnet closest to measurement point.
tMagnetDetection = zeros(1,sum(calcPhase==2)) ;
dMahaAll = zeros(5,sum(calcPhase==2)) ;
j = 0 ;
for i = 1 : length(t)
if calcPhase(i) ~= 2
continue ; % Not a measurement phase
end
j = j+1 ;
tMagnetDetection(j) = t(i) ;
% Calculate homogeneous transform of the robot with respect to the world frame
oTm = [ cos(theta(i)) , -sin(theta(i)) , x(i) ;
sin(theta(i)) , cos(theta(i)) , y(i) ;
0 , 0 , 1 ] ;
% Measurement vector: coordinates of the magnet measured in Rm.
Y = [ y1(i) ; y2(i) ] ;
% Now in homogeneous coordinates for calculations.
mMeasMagnet = [ Y ; 1 ] ;
% Corresponding position in absolute frame
oMeasMagnet = oTm * mMeasMagnet ;
% Which actual magnet is closest to the estimated position?
oRealMagnet = round( oMeasMagnet ./ [xSpacing ; ySpacing ; 1] ) .* [xSpacing ; ySpacing ; 1] ;
% The position of the real magnet in robot frame
mRealMagnet = oTm \ oRealMagnet ; % That's inv(oTm)*oRealMagnet
% The expected measurement are the two coordinates of the real
% magnet in the robot frame.
Yhat = mRealMagnet(1:2) ;
C = [ -cos(theta(i)) , -sin(theta(i)) , -sin(theta(i))*(oRealMagnet(1)-x(i))+cos(theta(i))*(oRealMagnet(2)-y(i)) ;
sin(theta(i)) , -cos(theta(i)) -sin(theta(i))*(oRealMagnet(2)-y(i))-cos(theta(i))*(oRealMagnet(1)-x(i)) ] ;
innov = Y - Yhat ;
P = [ P11(i) , P12(i) , P13(i) ;
P12(i) , P22(i) , P23(i) ;
P13(i) , P23(i) , P33(i) ] ;
dMaha = sqrt( innov.' / ( C*P*C.' + Qgamma) * innov ) ;
dMahaAll(1,j) = dMaha ;
estMagnetPos(:,j) = oMeasMagnet(1:2) ;
exactMagnetPos(:,j) = oRealMagnet(1:2) ;
% Offset vectors to generate the neighbors, in homogeneous coordinates.
deltas = [ xSpacing -xSpacing 0 0 ;
0 0 ySpacing -ySpacing ;
0 0 0 0 ] ;
for neighborIndex = 1 : 4
oPneighbor = oRealMagnet + deltas(:,neighborIndex) ;
% The position of the magnet in robot frame is the expected measurement
% YhatNeighbor
YhatNeighbor = oTm \ oPneighbor ; % That's inv(oTm)*oPneighbor
Cneighbor = [ -cos(theta(i)) , -sin(theta(i)) , -sin(theta(i))*(oPneighbor(1)-x(i))+cos(theta(i))*(oPneighbor(2)-y(i)) ;
sin(theta(i)) , -cos(theta(i)) , -sin(theta(i))*(oPneighbor(2)-y(i))-cos(theta(i))*(oPneighbor(1)-x(i)) ] ;
innovNeighbor = Y(1:2) - YhatNeighbor(1:2) ; % Not in homogeneous coordinates.
dMahaNeighbor = sqrt( innovNeighbor.' / ( Cneighbor*P*Cneighbor.' + Qgamma) * innovNeighbor ) ;
dMahaAll(neighborIndex+1,j) = dMahaNeighbor ;
end
end
% Plot Mahalanobis distances. Blue dots are for closest magnet,
% red dots are for neighbor magnets.
figure;
plot( tMagnetDetection , dMahaAll(1,:) , 'b.' , 'LineWidth',2 ) ;
for k = 2:5
hold on;
plot( tMagnetDetection , dMahaAll(k,:) , 'r.' , 'LineWidth',2 ) ;
end
hold on;
plot( tMagnetDetection , mahaThreshold*ones(1,size(dMahaAll,2)) , 'k' ,...
'LineWidth',2 ) ;
xlabel('t (s)');
ylabel('Mahalanobis distance (no dimension).');
title('Mahalanobis distances: closest magnet (blue) and neighbors (red)');
zoom on; grid on;
% Plot x, y and theta as functions of time
figure;
subplot(3,1,1);
plot( t,x , 'LineWidth',2 );
xlabel('t (s)')
ylabel('x (mm)');
title('Position and heading as functions of time.');
zoom on ; grid on;
subplot(3,1,2);
plot( t,y , 'LineWidth',2 );
xlabel('t (s)')
ylabel('y (mm)');
zoom on ; grid on;
subplot(3,1,3);
plot( t,theta*180/pi , 'LineWidth',2 );
xlabel('t (s)')
ylabel('theta (deg.)');
zoom on ; grid on;
% Determine the number of measurements (i.e. the number of detected magnets)
% at each step. The idea is to show the students that, in most cases,
% a single magnet is detected (or, of course, zero).
i = 1 ;
k = 0 ;
tMeas = zeros(1,nbPeriods) ;
nbMeas = zeros(1,nbPeriods) ;
while i <= length(t)
k = k+1 ;
tMeas(k) = t(i) ;
nbMeas(k) = 0 ;
j = 1 ;
while (i+j)<=length(t) && t(i+j)==t(i)
if y1(i+j) ~= 0
nbMeas(k) = nbMeas(k)+1 ;
end
j = j+1 ;
end
i = i+j ;
end
% Plot number of measurements at each time step.
figure;
plot(tMeas,nbMeas,'o') ;
xlabel('time (s)');
title('Number of magnets detected at each step.');
zoom on; grid on;
% Plot raw sensor measurements
rawMeas = zeros( nbReedSensors , nbPeriods ) ;
for k = 1 : nbPeriods
rawMeas( : , k ) = bitget( sensorReadings(k) , 1:8 ) ;
end
figure;
for n = 1 : nbReedSensors
for k = 1 : nbPeriods
if rawMeas(n,k) == 0
hold on ;
line([travDistance(k) travDistance(k)],[n-0.5 n+0.5],'Color','b','LineStyle','-');
end
end
end
set(gca,'YLim',[0 nbReedSensors+1])
xlabel('Travelled distance of point M (mm)');
ylabel('State of Reed sensors');
zoom on; grid on;
% Calculate and display odometry error (assuming KF is right).
fprintf('\nTotal travelled distance: %d mm\n',round(sum(abs(U1))));
fprintf('Final odometry error: %3.1f %%\n\n', ...
(norm([x(size(x,1)),y(size(y,1))]-Xodo(1:2,size(Xodo,2))) / sum(abs(U1)) )*100 );
% Calculate percentage of rejected closest magnets:
fprintf('Magnets rejected: %3.1f %%\n', ...
100*numel(find(dMahaAll(1,:) > mahaThreshold ))/numel(dMahaAll(1,:)));
fprintf('Neighbor magnets under threshold: %3.1f %%\n\n', ...
100*numel(find(dMahaAll(2:5,:) <= mahaThreshold ))/numel(dMahaAll(2:5,:))) ;