-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
528 lines (459 loc) · 24.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="keywords" content="miccai, tutorial, miccai-2023, miccai2023, computer vision, machine learning, graph, hypergraph, medical image analysis, GrapHMedIA">
<link rel="shortcut icon" href="./img/GrapHMedIA-small.png">
<title>GrapHMedIA: Graph and Hypergraph Learning in Medical Image Analysis</title>
<meta name="description" content="Tutorial in Conjunction with MICCAI 2023---">
<!-- 2023 MICCAI Tutorial on Graph and Hypergraph Learning in Medical Image Analysis (GrapHMedIA) -->
<!--Open Graph Related Stuff-->
<meta property="og:title" content="GrapHMedIA: Graph and Hypergraph Learning in Medical Image Analysis"/>
<!-- <meta property="og:url" content="https://cvpr2022-tutorial-diffusion-models.github.io"/> -->
<meta property="og:description" content="Tutorial in Conjunction with MICCAI 2023"/>
<meta property="og:site_name" content="GrapHMedIA: Graph and Hypergraph Learning in Medical Image Analysis"/>
<!-- <meta property="og:image" content="https://cvpr2022-tutorial-diffusion-models.github.io/img/thumbnail.png"/> -->
<!-- <meta property="og:image:url" content="https://cvpr2022-tutorial-diffusion-models.github.io/img/thumbnail.png"/> -->
<!--Twitter Card Stuff-->
<!-- <meta name="twitter:card" content="summary_large_image">
<meta name="twitter:creator" content="@ArashVahdat"> -->
<meta name="twitter:title" content="GrapHMedIA: Graph and Hypergraph Learning in Medical Image Analysis"/>
<!-- <meta name="twitter:image" content="https://cvpr2022-tutorial-diffusion-models.github.io/img/thumbnail.png">
<meta name="twitter:url" content="https://cvpr2022-tutorial-diffusion-models.github.io/"/> -->
<meta name="twitter:description" content="Tutorial on GrapHMedIA in Conjunction with MICCAI 2023"/>
<!-- CSS -->
<link rel="stylesheet" type="text/css" href="./css/bootstrap.min.css">
<link rel="stylesheet" type="text/css" href="./css/main.css?1" media="screen,projection">
<!-- Font Awesome -->
<script src="https://kit.fontawesome.com/ff6e9b10da.js" crossorigin="anonymous"></script>
</head>
<body>
<!-- <div class="top-strip"></div> -->
<div class="navbar navbar-default navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<a class="navbar-brand" href="/"></a>
<button class="navbar-toggle" type="button" data-toggle="collapse" data-target="#navbar-main">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<!-- <span class="icon-bar"></span> -->
</button>
</div>
<div class="navbar-collapse collapse" id="navbar-main">
<ul class="nav navbar-nav">
<li><a href="#organisers">Organisers</a></li>
<li><a href="#talks">Schedule</a></li>
<li><a href="#lectures">Lectures</a></li>
<!-- <li><a href="#organizers">Organising Team</a></li> -->
</ul>
</ul>
</div>
</div>
</div>
<div class="container">
<div class="page-content">
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<center><h2><b>MICCAI 2023 Tutorial</b></h2></center>
<center>
<a>
<img width="300px" src="./img/miccai2023.png" />
</a>
</center>
<br>
<br>
<br>
<center><h2><b>GrapHMedIA</h2></center>
<center><h1>Graph and Hypergraph Learning in Medical Image Analysis </h1></center>
<!-- <center><b>Dates</b>: Sunday June 19, 8:30 am - 12:10 pm (CDT) -->
<center><h1>Dates: 12 October 2023 -- 8:30am </h1>
<!--
<font color="#76b900"><b><a target="_blank" href="https://www.youtube.com/watch?v=n0p1zz0ZFiY">Live Session Recording</a></b></font></center>
<center><b>Time slot 2</b>: <strike>Sunday 23 August, 6:30 am - 8:00 am (PDT)</strike>, <font color="#76b900"><b><a target="_blank" href="https://www.youtube.com/watch?v=mYD783Z-wb8">Live Session Recording</a></b></font></center>
<center>ECCV 2020 <font color="#76b900"> <b><a target="_blank" href="https://workshopsandtutorials.eccv2020.eu/papers/category/tutorial-sunday-aug-23/new-frontiers-for-learning-with-limited-labels-or-data/">Microsite</a></b></font>, Pre-recorded talks: Youtube <font color="#76b900"><b><a target="_blank" href="https://www.youtube.com/playlist?list=PLDEjP3Cd-gys9TC1RuboblGzwfsaJ9FxU">Playlist</a></b></font>, Bilibili <font color="#76b900"><b><a target="_blank" href="https://www.bilibili.com/read/cv7268682?share_source=copy_link&share_medium=iphone&bbid=Z34AB836729C35E84416ACBF44A761007D7D&ts=1598042304">Playlist</a></b></font>
-->
</center>
</div>
</div>
<center>
<br>
<a>
<img src="./img/GrapHMedIA.png" />
</a>
</center>
<!-- <center>
<br>
<a>
<img width="300px" src="./img/miccai2023.png" />
</a>
<br>
<a>
<img src="./img/GrapHMedIA.png" />
</a>
</center> -->
<!-- <br>
<p style="color:red;text-align:center">
<b> 📢 🎥 Check <a href="https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view?usp=sharing">this Google drive link</a> for our tutorial slides and this <a href="https://www.youtube.com/watch?v=cS6JQpEY9cs">YouTube link</a> for the video recording.</b>
</p>
<br> -->
<br/>
<h2>Overview</h2>
<br/>
<p>
Graphs and hypergraphs have been increasingly used in medical image analysis due to their ability to represent complex relationships and interactions between different elements of an image. In medical images, different anatomical structures, physiological functions, and pathological conditions are interconnected in intricate ways. Graph-based approaches allow for the efficient representation and analysis of these interconnections, providing a powerful tool for understanding the structure and function of the human body. Hypergraphs extend the graph framework by allowing for the representation of higher-order interactions between image elements, enabling a more comprehensive understanding of the complex relationships in medical images. By leveraging the power of graphs and hypergraphs, medical image analysis can help clinicians make more accurate diagnoses, develop better treatment plans, and ultimately improve patient outcomes.
</p>
<p>
This tutorial seeks to draw attention to the current developments in graph learning and high-order relations via hypergraph learning for medical image analysis. The main objective is to explore the vast literature and recent developments in the area of graph and hypergraph learning for medical data. We will provide a discussion on the state-of-the-art, current challenges, and opportunities. We aim to organise this tutorial to provide to the audience with the foundations and current developments on graph and hypergraph learning. We will provide real-world case studies such as graph and hypergraphs for medical image classification and reconstruction.
</p>
<p>
After following our tutorial, attendees will be able to:<br>
● identify the mechanisms behind graphs and graph neural networks<br>
● identify the characteristics of hypergraphs and main properties<br>
● have an overview of the state-of-the-art in graph and hypergraph learning in medical image analysis<br>
● identify existing challenges and opportunities of graph and hypergraph learning when using medical data<br>
● critically identify the advantages of graph and hypergraph learning and relevant components<br>
</p>
<br id="organisers" /><br/>
<div class="row">
<div class="col-xs-12">
<h2>Organising Committee</h2>
<h3>Alphabetic Order</h3><br>
<br>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<div class="row">
<div class="col-xs-3" id="angelica">
<center>
<a href="https://angelicaiaviles.wordpress.com">
<img class="people-pic" src="./img/people/angelica.png" />
</a>
<div class="people-name">
<a href="https://angelicaiaviles.wordpress.com">Angelica I Aviles-Rivero</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="andrey">
<center>
<a href="https://andreybryutkin.netlify.app/about">
<img class="people-pic" src="./img/people/andrey.jpeg" />
</a>
<div class="people-name">
<a href="https://andreybryutkin.netlify.app/about">Andrey Bryutkin</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="yue">
<center>
<a href="https://www.gaoyue.org">
<img class="people-pic" src="./img/people/yue.jpeg" />
</a>
<div class="people-name">
<a href="https://www.gaoyue.org">Yue Gao</a>
<h6>Tsinghua University</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="jiahao">
<center>
<a href="https://www.researchgate.net/profile/Jiahao-Huang-15">
<img class="people-pic" src="./img/people/jiahao.jpeg" />
</a>
<div class="people-name">
<a href="https://www.researchgate.net/profile/Jiahao-Huang-15">Jiahao Huang</a>
<h6>Imperial College London</h6>
</div>
</center>
</div>
</div>
</div>
<div class="col-xs-12">
<div class="row">
<div class="col-xs-4" id="carola">
<center>
<a href="https://www.damtp.cam.ac.uk/user/cbs31/Home.html">
<img class="people-pic" src="./img/people/carola.png" />
</a>
<div class="people-name">
<a href="https://www.damtp.cam.ac.uk/user/cbs31/Home.html">Carola-Bibiane Schonlieb</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
<div class="col-xs-4" id="emma">
<center>
<a href="https://emma-sjwang.github.io">
<img class="people-pic" src="./img/people/emma.png" />
</a>
<div class="people-name">
<a href="https://emma-sjwang.github.io">Shujun Wang</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
<div class="col-xs-4" id="guang">
<center>
<a href="https://www.imperial.ac.uk/people/g.yang">
<img class="people-pic" src="./img/people/guang.png" />
</a>
<div class="people-name">
<a href="https://www.imperial.ac.uk/people/g.yang">Guang Yang</a>
<h6>Imperial College London</h6>
</div>
</center>
</div>
</div>
<br>
<div class="row">
<center>
<div class="col-xs-4"><img src="./img/University_of_Cambridge_logo.svg.png" style="width:70%"/> </div>
<div class="col-xs-4"><img src="./img/Tsinghua_University_logo_and_wordmark_in_Chinese_and_English_characters.svg.png" style="width:70%"/></div>
<div class="col-xs-4"><img src="./img/Imperial_logo.png" style="width:70%" /></div>
</center>
</div>
<br>
<br id="talks" />
<br>
<br>
<div class="row">
<div class="col-xs-12">
<h2>Schedule</h2>
<br>
<table class="table schedule" style="border:none !important;">
<thead class="thead-light">
<tr>
<th>Title</th>
<th>Speaker</th>
<th>Time (CDT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<!-- <td><a href="http://arashvahdat.com">Arash Vahdat</a></td> -->
<td></td>
<td>8:30am</td>
</tr>
<!-- <tr>
<td>Part (1): Denoising Diffusion Probabilistic Models</td>
<td><a href="http://arashvahdat.com">Arash Vahdat</a></td>
<td>08:40 - 09:15</td>
</tr> -->
<tr>
<td>Lecture 1: Semi-Supervised Graph Learning for Medical Image Analysis</td>
<td><a href="https://angelicaiaviles.wordpress.com">Angelica I Aviles-Rivero</a></td>
<td>8.50am</td>
</tr>
<tr>
<td>Lecture 2: Higher-Order Learning -- Hypergraph Computation for Medical Data</td>
<td><a href="https://www.gaoyue.org">Yue Gao</a></td>
<td>9.25am</td>
</tr>
<tr>
<td><b>Coffee Break </b></td>
<td> - </td>
<td><b>10am</b></td>
</tr>
<tr>
<td><s>Lecture 3: Recent Progress – Graph Transformers </s></td>
<td><a href="https://andreybryutkin.netlify.app/about">Andrey Bryutkin</a></td>
<td>-</td>
</tr>
<tr>
<td>Lecture 4: Graph Learning for MRI Reconstruction</td>
<td><a href="https://www.researchgate.net/profile/Jiahao-Huang-15">Jiahao Huang</a></td>
<td>10.30am</td>
</tr>
<tr>
<td>Lecture 5: Graph and Hypergraph Methods for Alzheimer's Disease Diagnosis</td>
<td><a href="https://emma-sjwang.github.io">Shujun Wang</a></td>
<td>11.05am</td>
</tr>
<tr>
<td>Conclusions, Open Problems and Final Remarks</td>
<td></td>
<td>11.40am</td>
</tr>
</tbody>
</table>
</div>
</div>
<br id="lectures" />
<br>
<h2>Lecture Detail</h2>
<br>
<p>
Lecture 1: Semi-Supervised Graph Learning for Medical Image Analysis <br>
<span style="font-weight:lighter"><u>Speaker: Angelica I Aviles-Rivero, University of Cambridge</u><br>
Deep supervised learning is the go-to technique for most state-of-the-art results in tasks such as classification, segmentation, and detection. However, these are heavily dependent on the availability of large and well-representative, expensive data sets. Here, we will focus on graph learning with minimal supervision. We will start by motivating graphs as a natural representation for medical data, along with the power of unlabelled data for designing robust and efficient algorithmic techniques. We will cover, from a minimal supervision perspective: i) classic models including the pros and cons of energy models and need to develop better functionals, ii) hybrid approaches to intertwine classic and deep learning techniques for generating robust solutions. Theory will be accompanied by real-world examples.
</span></p>
<p>
Lecture 2: Higher-Order Learning -- Hypergraph Computation for Medical Data<br>
<span style="font-weight:lighter"><u>Speaker: Yue Gao, Tsinghua University</u><br>
Graph learning and graph neural networks have attracted much attention in both research and industrial fields and become very hot topics in these years. It is noted that the world is far more complex than just pairwise connections. Hypergraph, as a generation of graph, is able to formulate such high-order correlations among the data and has been investigated in last decades. In this part, we first introduce the basic concepts and characteristics of hypergraphs. Next, focusing on hypergraph computation, we introduce hypergraph structural modeling, hypergraph structural evolution, and hypergraph neural network models. Finally, we introduce the application of hypergraph computation for medical data.
</span></p>
<p>
Lecture 3: Recent Progress – Graph Transformers<br>
<span style="font-weight:lighter"><u>Speaker: Andrey Bryutkin, University of Cambridge </u><br>
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. Transformer model has demonstrated its great potential in modeling graph-structured data. Till now, a great variety of Transformers has been proposed to adapt to the data. We first disassemble the existing models and conclude three typical ways to incorporate the graph information into the vanilla Transformer. Afterwards we will look at novel architectures for solving inverse problems and how specific demands of the problems can be implemented in the underlying neural network architecture.
</span></p>
<p>
Lecture 4: Graph Learning for MRI Reconstruction<br>
<span style="font-weight:lighter"><u>Speaker: Jiahao Huang, Imperial College London</u><br>
Deep learning models have been widely applied for fast MRI. However, the majority of existing deep learning models for MRI reconstruction work on data with Euclidean or regular grids structures, which fail to explore the high-dimensional features encapsulated in non-Euclidean manifolds extracted from MR data. We will first introduce the existing deep learning-based MRI reconstruction models for data with Euclidean structures. Then we will discuss graph-based models for MRI reconstruction task, from the perspective of the reconstruction quality and the intuitive explainability based on the non-Euclidean graph connections.
</span></p>
<p>
Lecture 5: Graph and Hypergraph Methods for Alzheimer's Disease Diagnosis<br>
<span style="font-weight:lighter"><u>Speaker: Emma Shujun Wang, University of Cambridge</u><br>
Alzheimer's disease (AD) is a neurodegenerative disease whose molecular mechanisms are activated several years before cognitive symptoms appear. Early detection of AD using deep learning techniques offers several medical and financial benefits. Large high-quality labelled MRI image datasets constitute a significant challenge to achieve accurate AD predictions using CNN models. Thus, the CNN models were not able to learn relationships among individual MRIs and were not generalizable. In this lecture, we will discuss several graph and hypergraph based methods to model the neighbouring relationship for accurate Alzheimer's Disease Diagnosis.
</p>
<!-- <br id="organizers" />
<br>
<br>
<br>
<div class="row">
<div class="col-xs-12">
<h2>Organising Team</h2>
</div>
</div>
<div class="row speaker" id="angelica">
<div class="col-sm-3 speaker-pic">
<a href="https://angelicaiaviles.wordpress.com">
<img class="people-pic" src="./img/people/angelica.png" />
</a>
<div class="people-name">
<a href="https://angelicaiaviles.wordpress.com">Angelica I Aviles-Rivero</a>
<h6>University of Cambridge</h6>
</div>
</div>
<div class="col-md-9">
<p class="speaker-bio">
<br>
Angelica I Aviles-Rivero (Senior Research Associate, University of Cambridge) centers on graph-based techniques for (bio-)medical applications, focused on novel functionals (PDEs) with carefully designed priors, allowing intertwining deep learning models. Recognitions include an outstanding paper award (ICML 2020) and elected officer (SIAM SIAG/IS 2022).
</div>
</div>
<div class="row speaker" id="andrey">
<div class="col-sm-3 speaker-pic">
<a href="https://andreybryutkin.netlify.app/about">
<img class="people-pic" src="./img/people/andrey.jpeg" />
</a>
<div class="people-name">
<a href="https://andreybryutkin.netlify.app/about">Andrey Bryutkin</a>
<h6>University of Cambridge</h6>
</div>
</div>
<div class="col-md-9">
<p class="speaker-bio">
<br>
Andrey Bryutkin (Graduate Student, University of Cambridge) has an interest in graph-based modeling and the application of neural networks for solving PDEs and inverse problems. The current focus is to combine the new architecture of transformers on graphs for novel neural networks applications on functionals.
</div>
</div>
<div class="row speaker" id="yue">
<div class="col-sm-3 speaker-pic">
<a href="https://www.gaoyue.org">
<img class="people-pic" src="./img/people/yue.jpeg" />
</a>
<div class="people-name">
<a href="https://www.gaoyue.org">Yue Gao</a>
<h6>Tsinghua University</h6>
</div>
</div>
<div class="col-md-9">
<p class="speaker-bio">
<br>
Yue Gao (Associate Professor, Tsinghua University) is an Associate Professor in School of Software, Tsinghua University, Beijing, China. His research falls in the field of Artificial Intelligence and Graph Learning. He leads the iMoon laboratory. He has large experience in developing Hypergraph Neural Networks and complex interaction networks with a wide range of real-world applications including medical image analysis.
</div>
</div>
<div class="row speaker" id="jiahao">
<div class="col-sm-3 speaker-pic">
<a href="https://www.researchgate.net/profile/Jiahao-Huang-15">
<img class="people-pic" src="./img/people/jiahao.jpeg" />
</a>
<div class="people-name">
<a href="https://www.researchgate.net/profile/Jiahao-Huang-15">Jiahao Huang</a>
<h6>Imperial College London</h6>
</div>
</div>
<div class="col-md-9">
<p class="speaker-bio">
<br>
Jiahao Huang (Graduate Student, Imperial College London) is interested in deep learning-based techniques for inverse problems in magnetic resonance imaging (MRI) like reconstruction and denoising, and relative application for diffusion tensor MRI. He focuses on the graph-based model for MRI reconstruction.
</div>
</div>
<div class="row speaker" id="carola">
<div class="col-sm-3 speaker-pic">
<a href="https://www.damtp.cam.ac.uk/user/cbs31/Home.html">
<img class="people-pic" src="./img/people/carola.png" />
</a>
<div class="people-name">
<a href="https://www.damtp.cam.ac.uk/user/cbs31/Home.html">Carola-Bibiane Schonlieb</a>
<h6>University of Cambridge</h6>
</div>
</div>
<div class="col-md-9">
<p class="speaker-bio">
<br>
Carola-Bibiane Schonlieb (Professor, University of Cambridge) Head of the Cambridge Image Analysis Group, the Director of the Cantab Capital Institute for Mathematics of Information, and the Director of the Engineering and Physical Sciences Research Council Cambridge Mathematics of Information in Healthcare Hub. Her research interests include variational methods, partial differential equations, machine learning for image analysis, image processing, and inverse imaging problems. </div>
</div>
<div class="row speaker" id="emma">
<div class="col-sm-3 speaker-pic">
<a href="https://emma-sjwang.github.io">
<img class="people-pic" src="./img/people/emma.png" />
</a>
<div class="people-name">
<a href="https://emma-sjwang.github.io">Shujun Wang</a>
<h6>University of Cambridge</h6>
</div>
</div>
<div class="col-md-9">
<p class="speaker-bio">
<br>
Shujun Wang (Research Associate, University of Cambridge) specializes in applications on digital health and computational precision medicine designing AI-driven computational methods to enable reliable medical decision-making for precision medicine, covering from disease diagnosis to prognosis, and from medical image computing to multi-modal biomedical data integration.
</div>
</div>
<div class="row speaker" id="guang">
<div class="col-sm-3 speaker-pic">
<a href="https://www.imperial.ac.uk/people/g.yang">
<img class="people-pic" src="./img/people/guang.png" />
</a>
<div class="people-name">
<a href="https://www.imperial.ac.uk/people/g.yang">Guang Yang</a>
<h6>Imperial College London</h6>
</div>
</div>
<div class="col-md-9">
<p class="speaker-bio">
<br>
Guang Yang (Advanced Research Fellow, Imperial College London) has a research group interested in developing novel and translational techniques for imaging and biomedical data analysis. His group focuses on the research and development of data-driven fast imaging, data harmonisation, image segmentation, image synthesis, federated learning, explainable AI etc. He is currently working on a wide range of clinical applications in cardiovascular disease, lung disease and oncology. Read more information about Yang’s Lab at: https://www.yanglab.fyi/ </div>
</div> -->
<br />
</div></div>
</div>
</div>
<div class="section text-gray" id="footer">
<div class="container">
<div class="row">
<div class="col-sm-6">
<!-- <p class="social">
<a href="mailto:[email protected]" class="email" data-animate-hover="shake" data-animate="fadeInUp"><i class="fa fa-envelope"></i></a>
</p> -->
</div>
<!-- /.6 -->
<div class="col-sm-6">
<p><small>© 2023 <a href="http://nvlabs.github.io" class="external">GrapHMedIA</a>.
Template by <a href="https://nvlabs.github.io/eccv2020-limited-labels-data-tutorial/" class="external"> Shalini De Mello</a>.</small></p>
</div>
</div>
</div>
</div>
<script type="text/javascript" src="/static/js/jquery.min.js"></script>
<script type="text/javascript" src="/static/js/bootstrap.min.js"></script>
</body>
</html>