-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
418 lines (363 loc) · 17.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<meta name="keywords" content="miccai, tutorial, miccai-2024, miccai2024, computer vision, machine learning, graph, medical image analysis, GraphMIA">
<link rel="shortcut icon" href="./img/GraphMIA-small.jpg">
<title>GraphMIA: Graph Learning in Medical Image Analysis</title>
<meta name="description" content="Tutorial in Conjunction with MICCAI 2024---">
<!-- 2024 MICCAI Tutorial on Graph Learning in Medical Image Analysis (GraphMIA) -->
<meta property="og:title" content="GraphMIA: Graph Learning in Medical Image Analysis"/>
<meta property="og:description" content="Tutorial in Conjunction with MICCAI 2024"/>
<meta property="og:site_name" content="GraphMIA: Graph Learning in Medical Image Analysis"/>
<!--Twitter Card Stuff-->
<meta name="twitter:title" content="GraphMIA: Graph Learning in Medical Image Analysis"/>
<meta name="twitter:description" content="Tutorial on GraphMIA in Conjunction with MICCAI 2024"/>
<!-- CSS -->
<link rel="stylesheet" type="text/css" href="./css/bootstrap.min.css">
<link rel="stylesheet" type="text/css" href="./css/main.css?1" media="screen,projection">
<!-- Font Awesome -->
<script src="https://kit.fontawesome.com/ff6e9b10da.js" crossorigin="anonymous"></script>
</head>
<body>
<!-- <div class="top-strip"></div> -->
<div class="navbar navbar-default navbar-fixed-top">
<div class="container">
<p><br /></p>
<div class="navbar-header">
<a class="navbar-brand" href="/"></a>
<button class="navbar-toggle" type="button" data-toggle="collapse" data-target="#navbar-main">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<div class="navbar-collapse collapse" id="navbar-main">
<ul class="nav navbar-nav">
<li><a href="#organisers">Organisers</a></li>
<li><a href="#talks">Schedule</a></li>
<li><a href="#lectures">Lectures</a></li>
</ul>
</div>
</div>
</div>
<div class="container">
<div class="page-content">
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<div style="display: flex; justify-content: space-between; align-items: center; text-align: center;">
<img style="width: 360px; margin-left: 80px;" src="./img/miccai2024.png" />
<img style="width: 240px; margin-right: 80px" src="./img/GraphMIA.jpg" />
</div>
<br>
<br>
<br>
<center><h1><b>MICCAI 2024 Tutorial - GraphMIA</h2></center>
<center><h1>GraphMIA: Graph Learning in Medical Image Analysis</h1></center>
<center><h2>Dates: 6 October 2024, @1:30pm</h2></center>
</div>
</div>
<br/>
<p><br/></p>
<br>
<h2>Overview</h2>
<br/>
<p>
Graphs have been increasingly used in medical image analysis due to their ability to represent complex relationships and interactions between different elements of an image. In medical images, different anatomical structures, physiological functions, and pathological conditions are interconnected in intricate ways. Graph-based approaches allow for the efficient representation and analysis of these interconnections, providing a powerful tool for understanding the structure and function of the human body. By leveraging the power of graphs, medical image analysis can help clinicians make more accurate diagnoses, develop better treatment plans, and ultimately improve patient outcomes.
</p>
<p>
This tutorial seeks to draw attention to the current developments in graph learning for medical image analysis. We will provide a discussion on the state-of-the-art, current challenges, and opportunities. We aim to organise this tutorial to provide to the audience with the foundations and current developments on graph learning. We will provide real-world case studies such as graphs for medical image classification and reconstruction. Tentative schedule:
</p>
<p>
After following our tutorial, attendees will be able to:<br>
● identify the mechanisms behind graphs and graph neural networks<br>
● have an overview of the state-of-the-art in graph learning in medical image analysis<br>
● identify existing challenges and opportunities of graph and hypergraph learning when using medical data<br>
● critically identify the advantages of graph learning and relevant components<br>
</p>
<br id="organisers" /><br/>
<div class="row">
<div class="col-xs-12">
<br>
<h2>Organising Committee</h2>
<h3>Alphabetic Order</h3><br>
<br>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<div class="row">
<div class="col-xs-3" id="angelica">
<center>
<a href="https://angelicaiaviles.wordpress.com">
<img class="people-pic" src="./img/people/angelica.png" />
</a>
<div class="people-name">
<a href="https://angelicaiaviles.wordpress.com">Angelica I Aviles-Rivero</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="cbs">
<center>
<a href="https://www.gaoyue.org">
<img class="people-pic" src="./img/people/cbs.png" />
</a>
<div class="people-name">
<a href="https://www.damtp.cam.ac.uk/research/cia/person/cbs31">Carola-Bibiane Schönlieb</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="sam">
<center>
<a href="http://www.damtp.cam.ac.uk/research/cia/person/cwc56">
<img class="people-pic" src="./img/people/sam.png" />
</a>
<div class="people-name">
<a href="http://www.damtp.cam.ac.uk/research/cia/person/cwc56">Chun-Wun Cheng</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="joy">
<center>
<a href="http://www.damtp.cam.ac.uk/research/cia/person/yc443">
<img class="people-pic" src="./img/people/joy.png" />
</a>
<div class="people-name">
<a href="http://www.damtp.cam.ac.uk/research/cia/person/yc443">Yanqi Cheng</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
</div>
</div>
<div class="col-xs-12">
<div class="row">
<div class="col-xs-3" id="yue">
<center>
<a href="https://www.gaoyue.org">
<img class="people-pic" src="./img/people/yue.jpeg" />
</a>
<div class="people-name">
<a href="https://www.gaoyue.org">Yue Gao</a>
<h6>Tsinghua University</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="jiahao">
<center>
<a href="https://www.researchgate.net/profile/Jiahao-Huang-15">
<img class="people-pic" src="./img/people/jiahao.jpeg" />
</a>
<div class="people-name">
<a href="https://www.researchgate.net/profile/Jiahao-Huang-15">Jiahao Huang</a>
<h6>Imperial College London</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="lihao">
<center>
<a href="https://lihaoliu-cambridge.github.io/">
<img class="people-pic" src="./img/people/lihao.png" />
</a>
<div class="people-name">
<a href="https://lihaoliu-cambridge.github.io/">Lihao Liu</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="emma">
<center>
<a href="https://emma-sjwang.github.io">
<img class="people-pic" src="./img/people/emma.png" />
</a>
<div class="people-name">
<a href="https://emma-sjwang.github.io">Shujun Wang</a>
<h6>Hong Kong Polytechnic University</h6>
</div>
</center>
</div>
</div>
</div>
<div class="col-xs-12">
<div class="row">
<div class="col-xs-3" id="guang">
<center>
<a href="https://www.imperial.ac.uk/people/g.yang">
<img class="people-pic" src="./img/people/guang.png" />
</a>
<div class="people-name">
<a href="https://www.imperial.ac.uk/people/g.yang">Guang Yang</a>
<h6>Imperial College London</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="lequan">
<center>
<a href="https://yulequan.github.io/">
<img class="people-pic" src="./img/people/lequan.jpeg" />
</a>
<div class="people-name">
<a href="https://yulequan.github.io/">Lequan Yu</a>
<h6>The University of Hong Kong</h6>
</div>
</center>
</div>
<div class="col-xs-3" id="lipei">
<center>
<a href="http://www.damtp.cam.ac.uk/research/cia/person/lz452">
<img class="people-pic" src="./img/people/lipei.jpeg" />
</a>
<div class="people-name">
<a href="http://www.damtp.cam.ac.uk/research/cia/person/lz452">Lipei Zhang</a>
<h6>University of Cambridge</h6>
</div>
</center>
</div>
</div>
</div>
</div>
<br>
<br>
<br>
<div class="col-xs-12">
<div class="row">
<center>
<div class="col-xs-3"><img src="./img/University_of_Cambridge_logo.svg.png" style="width:70%"/> </div>
<div class="col-xs-3"><img src="./img/Tsinghua_University_logo_and_wordmark_in_Chinese_and_English_characters.svg.png" style="width:70%"/></div>
<div class="col-xs-3"><img src="./img/Imperial_logo.png" style="width:70%" /></div>
<div class="col-xs-3"><img src="./img/HKU.png" style="width:100%" /></div>
</center>
</div>
</div>
<br>
<br id="talks" />
<br>
<br>
<br>
<br>
<div class="row">
<div class="col-xs-12">
<h2>Schedule</h2>
<br>
<table class="table schedule" style="border:none !important;">
<thead class="thead-light">
<tr>
<th>Title</th>
<th>Speaker</th>
<th>Time (CDT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td> - </td>
<td>13:30 - 13:35</td>
</tr>
<tr>
<td>Lecture 1: Semi-Supervised Graph Learning for Medical Image Analysis</td>
<td><a href="https://angelicaiaviles.wordpress.com">Angelica I Aviles-Rivero</a></td>
<td>13:35 - 14:05</td>
</tr>
<tr>
<td>Lecture 2: Graph Neural Network</td>
<td><a href="http://www.damtp.cam.ac.uk/research/cia/person/yc443">Yanqi Cheng</a></td>
<td>14:05 - 14:35</td>
</tr>
<tr>
<td>Lecture 3: Graph Transformer</td>
<td><a href="http://www.damtp.cam.ac.uk/research/cia/person/cwc56">Chun-Wun (Sam) Cheng</a></td>
<td>114:35 - 15:05</td>
</tr>
<tr>
<td><b>Coffee Break </b></td>
<td> - </td>
<td><b>-</b></td>
</tr>
<tr>
<td>Lecture 4: Higher-Order Learning -- Hypergraph Computation for Medical Data</td>
<td><a href="https://www.gaoyue.org">Yue Gao</a></td>
<td>15:45 - 16:15</td>
</tr>
<tr>
<td>Lecture 5: Graph Transformers for Medical Imaging</td>
<td><a href="https://yulequan.github.io/">Lequan Yu</a></td>
<td>16:15 - 16:45</td>
</tr>
<tr>
<td>Lecture 6: Graph Learning for MRI Reconstruction</td>
<td><a href="https://www.researchgate.net/profile/Jiahao-Huang-15">Jiahao Huang</a></td>
<td>16:45 - 17:15</td>
</tr>
<tr>
<td>Conclusions, Open Problems and Final Remarks</td>
<td> - </td>
<td> 17:15 - 17:20</td>
</tr>
</tbody>
</table>
</div>
</div>
<br id="lectures" />
<br>
<h2>Lecture Detail</h2>
<br>
<p>
Lecture 1: Semi-Supervised Graph Learning for Medical Image Analysis <br>
<span style="font-weight:lighter"><u>Speaker: Angelica I Aviles-Rivero, University of Cambridge</u><br>
Deep supervised learning is the go-to technique for most state-of-the-art results in tasks such as classification, segmentation, and detection. However, these are heavily dependent on the availability of large and well-representative, expensive data sets. Here, we will focus on graph learning with minimal supervision. We will start by motivating graphs as a natural representation for medical data, along with the power of unlabelled data for designing robust and efficient algorithmic techniques. We will cover, from a minimal supervision perspective: i) classic models including the pros and cons of energy models and need to develop better functionals, ii) hybrid approaches to intertwine classic and deep learning techniques for generating robust solutions. Theory will be accompanied by real-world examples.
</span></p>
<p>
Lecture 2: Graph Neural Network<br>
<span style="font-weight:lighter"><u>Speaker: Yanqi Cheng, University of Cambridge</u><br>
In the realm of data-rich relationships, diverse applications require models adept at learning from graph inputs. Graph Neural Networks (GNNs), specialised neural models, excel in capturing graph dependencies through message passing among nodes, playing a pivotal role in addressing challenges across various domains. Recent advancements in GNNs have enhanced their capabilities and expressive power. We will delve into the basics of graphs, challenges associated with computing over graphs, elucidate the origins and design principles behind graph neural networks, explore recent variants, and investigate their applications across different domains.
</span></p>
<p>
Lecture 3: Graph Transformer<br>
<span style="font-weight:lighter"><u>Speaker: Chun-Wun (Sam) Cheng, University of Cambridge </u><br>
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. Transformer model has demonstrated its great potential in modelling graph-structured data. Till now, a great variety of Transformers has been proposed to adapt to the data. We first disassemble the existing models and conclude three typical ways to incorporate the graph information into the vanilla Transformer. Afterwards we will look at novel architectures for solving inverse problems and how specific demands of the problems can be implemented in the underlying neural network architecture.
</span></p>
<p>
Lecture 4: Higher-Order Learning -- Hypergraph Computation for Medical Data<br>
<span style="font-weight:lighter"><u>Speaker: Yue Gao, Tsinghua University</u><br>
Graph learning and graph neural networks have attracted much attention in both research and industrial fields and become very hot topics in these years. It is noted that the world is far more complex than just pairwise connections. Hypergraph, as a generation of graphs, is able to formulate such high-order correlations among the data and has been investigated in last decades. In this part, we first introduce the basic concepts and characteristics of hypergraphs. Next, focusing on hypergraph computation, we introduce hypergraph structural modelling, hypergraph structural evolution, and hypergraph neural network models. Finally, we introduce the application of hypergraph computation for medical data.
</span></p>
<p>
Lecture 5: Graph Learning for MRI Reconstruction<br>
<span style="font-weight:lighter"><u>Speaker: Jiahao Huang, Imperial College London</u><br>
Deep learning models have been widely applied for fast MRI. However, the majority of existing deep learning models for MRI reconstruction work on data with Euclidean or regular grids structures, which fail to explore the high-dimensional features encapsulated in non-Euclidean manifolds extracted from MR data. We will first introduce the existing deep learning-based MRI reconstruction models for data with Euclidean structures. Then we will discuss graph-based models for MRI reconstruction task, from the perspective of the reconstruction quality and the intuitive explainability based on the non-Euclidean graph connections.
</p>
<p>
Lecture 6: Graph Transformers for Medical Imaging<br>
<span style="font-weight:lighter"><u>Speaker: Lequan Yu, The University of Hong Kong</u><br>
Graph Transformers have emerged as a powerful solution in medical imaging, showcasing promising capabilities when applied to graph modelling. Experimental results affirm the benefits of integrated graph modules within the transformer, demonstrating their efficacy across diverse graph-related tasks. In specific applications, we will introduce novel graph transformer frameworks that achieve superior accuracy and robustness in Whole Slide Image analysis compared to existing methods.
</span></p>
<br />
</div></div>
</div>
</div>
<div class="section text-gray" id="footer">
<div class="container">
<div class="row">
<div class="col-sm-6">
<!-- <p class="social">
<a href="mailto:[email protected]" class="email" data-animate-hover="shake" data-animate="fadeInUp"><i class="fa fa-envelope"></i></a>
</p> -->
</div>
<!-- /.6 -->
<div class="col-sm-6">
<p><small>© 2024 <a href="http://nvlabs.github.io" class="external">GraphMIA</a>.
Template by <a href="https://nvlabs.github.io/eccv2020-limited-labels-data-tutorial/" class="external"> Shalini De Mello</a>.</small></p>
</div>
</div>
</div>
</div>
<script type="text/javascript" src="/static/js/jquery.min.js"></script>
<script type="text/javascript" src="/static/js/bootstrap.min.js"></script>
</body>
</html>