-
Notifications
You must be signed in to change notification settings - Fork 5
/
Optimal Strategy for a Game
69 lines (61 loc) · 1.55 KB
/
Optimal Strategy for a Game
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
// C++ program to find out
// maximum value from a given
// sequence of coins
#include <bits/stdc++.h>
using namespace std;
// Returns optimal value possible
// that a player can collect from
// an array of coins of size n.
// Note than n must be even
int optimalStrategyOfGame(
int* arr, int n)
{
// Create a table to store
// solutions of subproblems
int table[n][n];
// Fill table using above
// recursive formula. Note
// that the table is filled
// in diagonal fashion (similar
// to http:// goo.gl/PQqoS),
// from diagonal elements to
// table[0][n-1] which is the result.
for (int gap = 0; gap < n; ++gap) {
for (int i = 0, j = gap; j < n; ++i, ++j) {
// Here x is value of F(i+2, j),
// y is F(i+1, j-1) and
// z is F(i, j-2) in above recursive
// formula
int x = ((i + 2) <= j)
? table[i + 2][j]
: 0;
int y = ((i + 1) <= (j - 1))
? table[i + 1][j - 1]
: 0;
int z = (i <= (j - 2))
? table[i][j - 2]
: 0;
table[i][j] = max(
arr[i] + min(x, y),
arr[j] + min(y, z));
}
}
return table[0][n - 1];
}
// Driver program to test above function
int main()
{
int arr1[] = { 8, 15, 3, 7 };
int n = sizeof(arr1) / sizeof(arr1[0]);
printf("%d\n",
optimalStrategyOfGame(arr1, n));
int arr2[] = { 2, 2, 2, 2 };
n = sizeof(arr2) / sizeof(arr2[0]);
printf("%d\n",
optimalStrategyOfGame(arr2, n));
int arr3[] = { 20, 30, 2, 2, 2, 10 };
n = sizeof(arr3) / sizeof(arr3[0]);
printf("%d\n",
optimalStrategyOfGame(arr3, n));
return 0;
}