forked from martinpilat/evaTeaching-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrules.py
325 lines (262 loc) · 10.6 KB
/
rules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import copy
import csv
import functools
import random
from collections import namedtuple, defaultdict
import numpy as np
import utils
POP_SIZE = 100 # population size
MAX_GEN = 50 # maximum number of generations
CX_PROB = 0.8 # crossover probability
MAX_RULES = 10 # maximum number of rules in an individual
MUT_CLS_PROB = 0.2 # probability of class changing mutation
MUT_CLS_PROB_CHANGE = 0.1 # probability of changing target class in mutation
MUT_COND_PROB = 0.2 # probabilty of condition changing mutation
MUT_COND_SIGMA = 0.3 # step size of condition changing mutation
REPEATS = 10 # number of runs of algorithm (should be at least 10)
INPUT_FILE = 'iris.csv' # the input file for classification
OUT_DIR = 'rules' # output directory for logs
EXP_ID = 'default' # the ID of this experiment (used to create log names)
# a rule is a list of conditions (one for each attribute) and the predicted class
Rule = namedtuple('Rule', ['conditions', 'cls'])
# the following 3 classes implement simple conditions, the call method is used
# to match the condition against a value
class LessThen:
def __init__(self, threshold, lb, ub):
self.params = np.array([threshold])
self.lb = lb
self.ub = ub
def boundary(self):
return (self.ub - self.lb)*self.params[0] + self.lb
def __call__(self, value):
return value <= self.boundary()
def __str__(self):
return " <= " + str(self.boundary())
class GreaterThen:
def __init__(self, threshold, lb, ub):
self.params = np.array([threshold])
self.lb = lb
self.ub = ub
def boundary(self):
return (self.ub - self.lb)*self.params[0] + self.lb
def __call__(self, value):
return value >= self.boundary()
def __str__(self):
return " >= " + str(self.boundary())
class Any:
def __init__(self):
self.params = np.array([])
def __call__(self, value):
return True
def __str__(self):
return " * "
# generate a single random rule - defines the probabilities of different
# conditions in the initial population
def create_rule(num_attrs, num_classes, lb, ub):
conditions = []
for i in range(num_attrs):
r = random.random()
if r < 0.25:
conditions.append(LessThen(random.random(), lb[i], ub[i]))
elif r < 0.5:
conditions.append(GreaterThen(random.random(), lb[i], ub[i]))
else:
conditions.append(Any())
return Rule(conditions=conditions, cls=random.randrange(0, num_classes))
# creates the individual - list of rules
def create_ind(max_rules, num_attrs, num_classes, lb, ub):
ind_len = random.randrange(1, MAX_RULES)
return [create_rule(num_attrs, num_classes, lb, ub) for i in range(ind_len)]
# creates the population using the create individual function
def create_pop(pop_size, create_individual):
return [create_individual() for _ in range(pop_size)]
# uses an individual to predict a single instance - the rules in the individual
# vote for the final class
def classify_instance(ind, attrs):
votes = defaultdict(int)
for rule in ind:
if all([cond(a) for cond, a in zip(rule.conditions, attrs)]):
votes[rule.cls] += 1
best_class = None
best_votes = -1
for k, v in votes.items():
if v > best_votes:
best_votes = v
best_class = k
if best_class == None:
best_class = 0
return best_class
# computes the accuracy of the individual on a given dataset
def accuracy(ind, data):
data_x, data_y = data
correct = 0
for attrs, target in zip(data_x, data_y):
if classify_instance(ind, attrs) == target:
correct += 1
return correct/len(data_y)
# computes the fitness (accuracy on training data) and objective (error rate
# on testing data)
def fitness(ind, train_data, test_data):
return utils.FitObjPair(fitness=accuracy(ind, train_data),
objective=1-accuracy(ind, test_data))
# the tournament selection
def tournament_selection(pop, fits, k):
selected = []
for _ in range(k):
p1 = random.randrange(0, len(pop))
p2 = random.randrange(0, len(pop))
if fits[p1] > fits[p2]:
selected.append(copy.deepcopy(pop[p1]))
else:
selected.append(copy.deepcopy(pop[p2]))
return selected
# implements a uniform crossover for individuals with different lenghts
def cross(p1, p2):
o1, o2 = [], []
for r1, r2 in zip(p1, p2):
if random.random() < 0.5:
o1.append(copy.deepcopy(r1))
o2.append(copy.deepcopy(r2))
else:
o1.append(copy.deepcopy(r2))
o2.append(copy.deepcopy(r1))
# individuals can have different lenghts
l = min(len(p1), len(p2))
rest = p1[l:] + p2[l:]
for r in rest:
if random.random() < 0.5:
o1.append(copy.deepcopy(r))
else:
o2.append(copy.deepcopy(r))
return o1, o2
# class mutation - changes the predicted class for a given rule
def cls_mutate(p, num_classes):
p = copy.deepcopy(p)
o = []
for r in p:
o_cls = r.cls
if random.random() < MUT_CLS_PROB_CHANGE:
o_cls = random.randrange(0, num_classes)
o.append(Rule(conditions=r.conditions, cls=o_cls))
return o
# mutation changing the threshold in conditions in an individual
def cond_mutate(p):
o = copy.deepcopy(p)
for r in o:
for c in r.conditions:
c.params += MUT_COND_SIGMA*np.random.randn(*c.params.shape)
return o
# applies a list of genetic operators (functions with 1 argument - population)
# to the population
def mate(pop, operators):
for o in operators:
pop = o(pop)
return pop
# applies the cross function (implementing the crossover of two individuals)
# to the whole population (with probability cx_prob)
def crossover(pop, cross, cx_prob):
off = []
for p1, p2 in zip(pop[0::2], pop[1::2]):
if random.random() < cx_prob:
o1, o2 = cross(p1, p2)
else:
o1, o2 = p1[:], p2[:]
off.append(o1)
off.append(o2)
return off
# applies the mutate function (implementing the mutation of a single individual)
# to the whole population with probability mut_prob)
def mutation(pop, mutate, mut_prob):
return [mutate(p) if random.random() < mut_prob else p[:] for p in pop]
# reads data in a csv file
def read_data(filename):
data_x = []
data_y = []
with open(filename) as csvfile:
reader = csv.reader(csvfile, delimiter=',')
for line in reader:
attrs = line[:-1]
target = line[-1]
data_x.append(list(map(float, attrs)))
data_y.append(int(target))
return (np.array(data_x), np.array(data_y))
# implements the evolutionary algorithm
# arguments:
# pop_size - the initial population
# max_gen - maximum number of generation
# fitness - fitness function (takes individual as argument and returns
# FitObjPair)
# operators - list of genetic operators (functions with one arguments -
# population; returning a population)
# mate_sel - mating selection (funtion with three arguments - population,
# fitness values, number of individuals to select; returning the
# selected population)
# mutate_ind - reference to the class to mutate an individual - can be used to
# change the mutation step adaptively
# map_fn - function to use to map fitness evaluation over the whole
# population (default `map`)
# log - a utils.Log structure to log the evolution run
def evolutionary_algorithm(pop, max_gen, fitness, operators, mate_sel, *, map_fn=map, log=None):
evals = 0
for G in range(max_gen):
fits_objs = list(map_fn(fitness, pop))
evals += len(pop)
if log:
log.add_gen(fits_objs, evals)
fits = [f.fitness for f in fits_objs]
objs = [f.objective for f in fits_objs]
mating_pool = mate_sel(pop, fits, POP_SIZE)
offspring = mate(mating_pool, operators)
pop = offspring[1:] + [pop[max(enumerate(fits), key=lambda x: x[1])[0]]]
return pop
if __name__ == '__main__':
# read the data
data = read_data('inputs/' + INPUT_FILE)
num_attrs = len(data[0][0])
num_classes = max(data[1]) + 1
# make training and testing split
perm = np.arange(len(data[1]))
np.random.shuffle(perm)
n_train = 2*len(data[1])//3
train_x, test_x = data[0][perm[:n_train]], data[0][perm[n_train:]]
train_y, test_y = data[1][perm[:n_train]], data[1][perm[n_train:]]
# count the lower and upper bounds
lb = np.min(train_x, axis=0)
ub = np.max(train_x, axis=0)
train_data = (train_x, train_y)
test_data = (test_x, test_y)
# use `functool.partial` to create fix some arguments of the functions
# and create functions with required signatures
cr_ind = functools.partial(create_ind, max_rules=MAX_RULES,
num_attrs=num_attrs, num_classes=num_classes,
lb=lb, ub=ub)
xover = functools.partial(crossover, cross=cross, cx_prob=CX_PROB)
cls_mutate = functools.partial(cls_mutate, num_classes=num_classes)
mut_cls = functools.partial(mutation, mutate=cls_mutate, mut_prob=MUT_CLS_PROB)
mut_cond = functools.partial(mutation, mutate=cond_mutate, mut_prob=MUT_COND_PROB)
fit = functools.partial(fitness, train_data=train_data, test_data=test_data)
# run the algorithm `REPEATS` times and remember the best solutions from
# last generations
import multiprocessing
pool = multiprocessing.Pool(8)
map_fn = pool.map
best_inds = []
for run in range(REPEATS):
# initialize the log structure
log = utils.Log(OUT_DIR, EXP_ID, run, write_immediately=True, print_frequency=1)
# create population
pop = create_pop(POP_SIZE, cr_ind)
# run evolution - notice we use the pool.map as the map_fn
pop = evolutionary_algorithm(pop, MAX_GEN, fit, [xover, mut_cls, mut_cond],
tournament_selection, map_fn=map_fn, log=log)
# remember the best individual from last generation, save it to file
bi = max(pop, key=fit)
best_inds.append(bi)
# if we used write_immediately = False, we would need to save the
# files now
# log.write_files()
# print an overview of the best individuals from each run
for i, bi in enumerate(best_inds):
print(f'Run {i}: objective = {fit(bi).objective}')
# write summary logs for the whole experiment
utils.summarize_experiment(OUT_DIR, EXP_ID)