-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathcifar10.py
345 lines (280 loc) · 11.4 KB
/
cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# Copyright 2015 Matthieu Courbariaux
# This file is part of BinaryConnect.
# BinaryConnect is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# BinaryConnect is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with BinaryConnect. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function
import sys
import os
import time
import numpy as np
np.random.seed(1234) # for reproducibility?
# specifying the gpu to use
# import theano.sandbox.cuda
# theano.sandbox.cuda.use('gpu1')
import theano
import theano.tensor as T
import lasagne
import cPickle as pickle
import gzip
import batch_norm
import binary_connect
from pylearn2.datasets.zca_dataset import ZCA_Dataset
from pylearn2.utils import serial
from collections import OrderedDict
if __name__ == "__main__":
# BN parameters
batch_size = 50
print("batch_size = "+str(batch_size))
# alpha is the exponential moving average factor
alpha = .1
print("alpha = "+str(alpha))
epsilon = 1e-4
print("epsilon = "+str(epsilon))
# Training parameters
num_epochs = 500
print("num_epochs = "+str(num_epochs))
# BinaryConnect
binary = True
print("binary = "+str(binary))
stochastic = True
print("stochastic = "+str(stochastic))
# (-H,+H) are the two binary values
# H = "Glorot"
H = 1.
print("H = "+str(H))
# W_LR_scale = 1.
W_LR_scale = "Glorot" # "Glorot" means we are using the coefficients from Glorot's paper
print("W_LR_scale = "+str(W_LR_scale))
# Decaying LR
LR_start = 0.003
print("LR_start = "+str(LR_start))
LR_fin = 0.000002
print("LR_fin = "+str(LR_fin))
LR_decay = (LR_fin/LR_start)**(1./num_epochs)
print("LR_decay = "+str(LR_decay))
# BTW, LR decay might good for the BN moving average...
train_set_size = 45000
print("train_set_size = "+str(train_set_size))
print('Loading CIFAR-10 dataset...')
preprocessor = serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/preprocessor.pkl")
train_set = ZCA_Dataset(
preprocessed_dataset=serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"),
preprocessor = preprocessor,
start=0, stop = train_set_size)
valid_set = ZCA_Dataset(
preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"),
preprocessor = preprocessor,
start=45000, stop = 50000)
test_set = ZCA_Dataset(
preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"),
preprocessor = preprocessor)
# bc01 format
# print train_set.X.shape
train_set.X = train_set.X.reshape(-1,3,32,32)
valid_set.X = valid_set.X.reshape(-1,3,32,32)
test_set.X = test_set.X.reshape(-1,3,32,32)
# flatten targets
train_set.y = np.hstack(train_set.y)
valid_set.y = np.hstack(valid_set.y)
test_set.y = np.hstack(test_set.y)
# Onehot the targets
train_set.y = np.float32(np.eye(10)[train_set.y])
valid_set.y = np.float32(np.eye(10)[valid_set.y])
test_set.y = np.float32(np.eye(10)[test_set.y])
# for hinge loss
train_set.y = 2* train_set.y - 1.
valid_set.y = 2* valid_set.y - 1.
test_set.y = 2* test_set.y - 1.
print('Building the CNN...')
# Prepare Theano variables for inputs and targets
input = T.tensor4('inputs')
target = T.matrix('targets')
LR = T.scalar('LR', dtype=theano.config.floatX)
cnn = lasagne.layers.InputLayer(
shape=(None, 3, 32, 32),
input_var=input)
# 128C3-128C3-P2
cnn = binary_connect.Conv2DLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
num_filters=128,
filter_size=(3, 3),
pad=1,
nonlinearity=lasagne.nonlinearities.identity)
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
cnn = binary_connect.Conv2DLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
num_filters=128,
filter_size=(3, 3),
pad=1,
nonlinearity=lasagne.nonlinearities.identity)
cnn = lasagne.layers.MaxPool2DLayer(cnn, pool_size=(2, 2))
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
# 256C3-256C3-P2
cnn = binary_connect.Conv2DLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
num_filters=256,
filter_size=(3, 3),
pad=1,
nonlinearity=lasagne.nonlinearities.identity)
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
cnn = binary_connect.Conv2DLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
num_filters=256,
filter_size=(3, 3),
pad=1,
nonlinearity=lasagne.nonlinearities.identity)
cnn = lasagne.layers.MaxPool2DLayer(cnn, pool_size=(2, 2))
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
# 512C3-512C3-P2
cnn = binary_connect.Conv2DLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
num_filters=512,
filter_size=(3, 3),
pad=1,
nonlinearity=lasagne.nonlinearities.identity)
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
cnn = binary_connect.Conv2DLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
num_filters=512,
filter_size=(3, 3),
pad=1,
nonlinearity=lasagne.nonlinearities.identity)
cnn = lasagne.layers.MaxPool2DLayer(cnn, pool_size=(2, 2))
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
# print(cnn.output_shape)
# 1024FP-1024FP-10FP
cnn = binary_connect.DenseLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=1024)
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
cnn = binary_connect.DenseLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=1024)
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.rectify)
cnn = binary_connect.DenseLayer(
cnn,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=10)
cnn = batch_norm.BatchNormLayer(
cnn,
epsilon=epsilon,
alpha=alpha,
nonlinearity=lasagne.nonlinearities.identity)
train_output = lasagne.layers.get_output(cnn, deterministic=False)
# squared hinge loss
loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))
if binary:
# W updates
W = lasagne.layers.get_all_params(cnn, binary=True)
W_grads = binary_connect.compute_grads(loss,cnn)
updates = lasagne.updates.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
updates = binary_connect.clipping_scaling(updates,cnn)
# other parameters updates
params = lasagne.layers.get_all_params(cnn, trainable=True, binary=False)
updates = OrderedDict(updates.items() + lasagne.updates.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())
else:
params = lasagne.layers.get_all_params(cnn, trainable=True)
updates = lasagne.updates.adam(loss_or_grads=loss, params=params, learning_rate=LR)
test_output = lasagne.layers.get_output(cnn, deterministic=True)
test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)
# Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
# and returning the corresponding training loss:
train_fn = theano.function([input, target, LR], loss, updates=updates)
# Compile a second function computing the validation loss and accuracy:
val_fn = theano.function([input, target], [test_loss, test_err])
print('Training...')
binary_connect.train(
train_fn,val_fn,
batch_size,
LR_start,LR_decay,
num_epochs,
train_set.X,train_set.y,
valid_set.X,valid_set.y,
test_set.X,test_set.y)
# print("display histogram")
# W = lasagne.layers.get_all_layers(mlp)[2].W.get_value()
# print(W.shape)
# histogram = np.histogram(W,bins=1000,range=(-1.1,1.1))
# np.savetxt(str(dropout_hidden)+str(binary)+str(stochastic)+str(H)+"_hist0.csv", histogram[0], delimiter=",")
# np.savetxt(str(dropout_hidden)+str(binary)+str(stochastic)+str(H)+"_hist1.csv", histogram[1], delimiter=",")
# Optionally, you could now dump the network weights to a file like this:
# np.savez('model.npz', lasagne.layers.get_all_param_values(network))