Skip to content

Latest commit

 

History

History

dl

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deep Learning

Neural Network

A Single Neuron / Perceptron

$$\begin{tikzpicture}[shorten >=1pt,->] \tikzstyle{unit}=[draw,shape=circle,minimum size=1.15cm]

\node[unit](p) at (2,1){$y$};
\node(dots) at (-0.25,1){\vdots};

\draw (0,2.5) node[xshift=-10]{$w_0$} -- (p);
\draw (0,1.75) node[xshift=-10]{$x_1$} --(p);
\draw (0,0) node[xshift=-10]{$x_D$} -- (p);
\draw (p) -- (3,1) node[xshift=30]{$y := f(z)$};

\end{tikzpicture}$$

$$z = w x + b$$

adding an activation function g :

$$z = g(w x + b)$$

Some standard activation functions are :

  • The sigmoid : $g(x) = \dfrac{e^x}{1+e^x}$
  • The ReLu : $g(x) = \max(0,x)$
  • (Can also be linear: $g(x)=x$)

Multi Layer Perceptron (MLP)

Backpropagation

Auto-Encoder (AE)

Variational Auto Encoder (VAE)

Generative Adversarial Network (GAN)