-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpooling.py
149 lines (111 loc) · 5.08 KB
/
pooling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
from .base_layer import BaseLayer
class BasePadding1d:
def _add_padding(self,X):
'''Add padding to X'''
if self.padding == 0 :
return X
X = np.hstack((np.zeros(X.shape[0]*self.padding).reshape(-1,self.padding),X)) # Left padding
X = np.hstack((X,np.zeros(X.shape[0]).reshape(-1,self.padding)))# Right padding
return X
class BasePooling1d(BasePadding1d):
def __init__(self,pool_size=3,padding=0,stride=1):
assert isinstance(pool_size,int), "Pool size must be an int"
assert isinstance(padding,int) and padding >= 0, "Padding must an int >= 0"
self.pool_size = pool_size
self.padding = padding
assert stride > 0, "Stride must be at min 1"
if stride > 1 :
raise NotImplementedError("Stride Greater than 1 is not implemented")
self.stride = stride
def plug(self,inputlayer):
assert len(inputlayer.output_shape) == 1, "1D Pooling take only vector as input"
self.input_shape = inputlayer.output_shape[0]
self.output_shape = [1+ self.input_shape + self.padding - self.pool_size]
assert self.output_shape[0] > 0 , "Shapes of pooling and input don't match"
self.input_unit = inputlayer
inputlayer.output_unit = self
self.zin = 0
def forward(self,X,*args,**kwargs):
self.zin = self.input_unit.forward(X)
self.zout = np.apply_along_axis(self._pool,1,self._add_padding(self.zin))
return self.zout
def _pool(self,X,fun=np.max):
return np.array([fun(X[i:i+self.pool_size]) for i in range(X.shape[0]-self.pool_size+1)])
class MaxPooling1d(BasePooling1d,BaseLayer):
def _pool(self,X):
return super()._pool(X,fun=np.max)
def backprop(self,delta,*args,**kwargs):
# TODO
return delta
class MinPooling1d(BasePooling1d,BaseLayer):
def _pool(self,X):
return super()._pool(X,fun=np.min)
def backprop(self,delta,*args,**kwargs):
# TODO
return delta
class AvgPooling1d(BasePooling1d,BaseLayer):
def _pool(self,X):
return super()._pool(X,fun=np.mean)
def backprop(self,delta,*args,**kwargs):
# TODO
return delta
class BasePadding2d:
def _add_padding(self,X):
'''Add padding to X'''
if self.padding == 0 :
return X
def pad_1datapoint(x):
x = np.hstack((np.zeros(x.shape[0]*self.padding).reshape(-1,self.padding),x)) # left
x = np.hstack((x,np.zeros(x.shape[0]*self.padding).reshape(-1,self.padding)))# right
x = np.vstack((x,np.zeros(x.shape[1]*self.padding).reshape(self.padding,-1)))# top
x = np.vstack((np.zeros(x.shape[1]*self.padding).reshape(self.padding,-1),x))# bottom
return x
return np.array([pad_1datapoint(X[i]) for i in range(X.shape[0])])
class BasePooling2d(BasePadding2d):
def __init__(self,pool_size=(3,3),padding=0,stride=1):
assert len(pool_size)==2, "Pool size must be tuple of size 2"
assert isinstance(padding,int) and padding >= 0, "Padding must an int >= 0"
self.pool_size = pool_size
self.padding = padding
assert stride > 0, "Stride must be at min 1"
if stride > 1 :
raise NotImplementedError("Stride Greater than 1 is not implemented")
self.stride = stride
def plug(self,inputlayer):
assert len(inputlayer.output_shape) == 2, "Pooling 2d take only vector as input"
self.input_shape = inputlayer.output_shape
self.output_shape = [1+ self.input_shape[0] + self.padding - self.pool_size[0],1+ self.input_shape[1] + self.padding - self.pool_size[1]]
assert self.output_shape[0] > 0 and self.output_shape[1] > 0, "Shapes of pooling and input don't match"
self.input_unit = inputlayer
inputlayer.output_unit = self
self.zin = 0
def forward(self,X,*args,**kwargs):
self.zin = self.input_unit.forward(X)
self.zout = self._pool(self._add_padding(self.zin))
return self.zout
def _pool(self,X,fun=np.max):
pooled = np.zeros((X.shape[0],*self.output_shape))
for n in range(X.shape[0]):
for i in range(X.shape[1]-self.pool_size[0]+1):
for j in range(X.shape[2]-self.pool_size[1]+1):
pooled[n,i,j] = fun(X[n,i:i+self.pool_size[0],j:j+self.pool_size[1]])
return pooled
class MaxPooling2d(BasePooling2d,BaseLayer):
def _pool(self,X):
return super()._pool(X,fun=np.max)
def backprop(self,delta,*args,**kwargs):
# TODO
return delta
class MinPooling2d(BasePooling2d,BaseLayer):
def _pool(self,X):
return super()._pool(X,fun=np.min)
def backprop(self,delta,*args,**kwargs):
# TODO
return delta
class AvgPooling2d(BasePooling1d,BaseLayer):
def _pool(self,X):
return super()._pool(X,fun=np.mean)
def backprop(self,delta,*args,**kwargs):
# TODO
return delta