Overall structure of this directory should be as follows.
data
├── coco
├── imgnet
├── CIRR
└── fashion-iq
imgnet
├── imagenet-r ## unzipped imagenet-r directories containing images. This folder should contain subfolders.
└──n01443537
.
.
├── imgnet_real_query.txt
├── imgnet_targets.txt
└── real ## imagenet validation directories containing images. This folder should contain subfolders.
└──n01440764
.
.
See ImageNet-R to download the dataset.
coco
├── annotations/instances_val2017.json ## annotations for COCO validation images.
├── prepare_data.py ## code to generate query data.
├── coco_eval.csv ## this will be generated by running prepare_data.py
├── val2017 ## directory containing COCO validation images.
└── val2017_masked ## running prepare_data.py will produce the directory.
Download both instances_val2017.json and val2017. Run the command to below to produce directory of val2017_masked.
python prepare_data.py
cirr
├── captions
└──cap.rc2.val.json
├── dev
└── image_splits
└──split.rc2.val.json
Download the images following instruction on CIRR.
fashion-iq
├── json
├── cap.dress.val.json
├── cap.shirt.val.json
└── cap.toptee.val.json
├── image_splits
├── split.dress.val.json
├── split.shirt.val.json
└── split.toptee.val.json
└── images ## images under this directory.
Json files are available in https://github.com/XiaoxiaoGuo/fashion-iq. Images are downloaded from https://github.com/postBG/CosMo.pytorch.