-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutility.py
127 lines (100 loc) · 3.57 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from pymoo.algorithms.moo.nsga2 import NSGA2
from pymoo.operators.crossover.pntx import SinglePointCrossover
from pymoo.operators.mutation.bitflip import BitflipMutation
from pymoo.optimize import minimize
from problem import OptimisationProblem
from sampling import CustomSampling, CustomSelectionSampling
from mutation import CustomMutation
from pymoo.indicators.hv import HV
import pandas as pd
import numpy as np
import enum
pop_size = 100
n_gen = 100
class Method(enum.Enum):
normal = 1
enhanced_mutation = 2
selection = 3
def get_result(dataset=None, X=None, y=None, method=Method.normal, random_state=0):
if dataset is not None:
problem = OptimisationProblem(dataset=dataset, random_state=random_state)
else:
problem = OptimisationProblem(X=X, y=y, random_state=random_state)
if method == Method.enhanced_mutation:
algorithm = NSGA2(pop_size=pop_size,
sampling=CustomSampling(),
mutation=CustomMutation())
elif method == Method.selection:
algorithm = NSGA2(pop_size=pop_size,
sampling=CustomSelectionSampling(),
crossover=SinglePointCrossover(),
mutation=BitflipMutation())
elif method == Method.normal:
algorithm = NSGA2(pop_size=pop_size,
sampling=CustomSampling())
res = minimize(problem, algorithm, ('n_gen', n_gen), verbose=False)
return res
def calculate_hv(res, res2):
res_norm = normalize_data(res)
res2_norm = normalize_data(res2)
ref_point = np.array([1.1, 1.1])
ind = HV(ref_point=ref_point)
hv1 = ind(res_norm)
hv2 = ind(res2_norm)
return hv1, hv2
def normalize_data(res):
data = res.F
data_norm = np.empty_like(data)
data_norm[:, 0] = data[:, 0] / 100
data_norm[:, 1] = data[:, 1] / res.problem.n_var
return data_norm
def get_arrhythmia_dataset():
data = pd.read_csv("dataset\\arrhythmia\\arrhythmia.data", header=None, na_values="?")
# pre-process
max_nan = 0
max_nan_col = ''
for col in data.columns:
nan_count = data[col].isna().sum()
if nan_count > max_nan:
max_nan = nan_count
max_nan_col = col
data.drop(max_nan_col, axis=1, inplace=True)
for col in data.columns:
if data[col].hasnans:
data[col].fillna(data[col].mean(), inplace=True)
return data
def get_movement_dataset():
data = pd.read_csv("dataset\\libras+movement\\movement_libras.data", header=None)
return data
def get_11Tumor_dataset():
data = pd.read_csv("dataset\\11Tumor.txt", header=None)
return data
def get_sonar_dataset():
data = pd.read_csv("dataset\\connectionist+bench+sonar+mines+vs+rocks\\"
"sonar.all-data", header=None, na_values="?")
# pre-process
last_col = data.columns[-1]
data[last_col] = data[last_col].replace(['M', 'R'], [0, 1])
return data
class Result:
def __init__(self, res1, res2, hv1, hv2):
self.res1 = res1
self.res2 = res2
self.hv1 = hv1
self.hv2 = hv2
def get_min_rev_acc_res1(self):
min_acc = 100
features = 0
for res in self.res1:
if res[0] <= min_acc:
min_acc = res[0]
features = res[1]
return min_acc, features
def get_min_rev_acc_res2(self):
min_acc = 100
features = 0
for res in self.res2:
if res[0] <= min_acc:
min_acc = res[0]
features = res[1]
return min_acc, features