-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsinks.py
495 lines (424 loc) · 18.2 KB
/
sinks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
"""Postgres target sink class, which handles writing streams."""
from __future__ import annotations
import datetime
import typing as t
import uuid
import sqlalchemy as sa
from singer_sdk.sinks import SQLSink
from sqlalchemy.sql.expression import bindparam
from target_postgres.connector import PostgresConnector
if t.TYPE_CHECKING:
from singer_sdk.connectors.sql import FullyQualifiedName
from sqlalchemy.sql import Executable
class PostgresSink(SQLSink):
"""Postgres target sink class."""
connector_class = PostgresConnector
def __init__(self, *args, **kwargs):
"""Initialize SQL Sink. See super class for more details."""
super().__init__(*args, **kwargs)
self.temp_table_name = self.generate_temp_table_name()
@property
def append_only(self) -> bool:
"""Return True if the target is append only."""
return self._append_only
@append_only.setter
def append_only(self, value: bool) -> None:
"""Set the append_only attribute."""
self._append_only = value
@property
def connector(self) -> PostgresConnector:
"""Return the connector object.
Returns:
The connector object.
"""
return t.cast("PostgresConnector", self._connector)
def setup(self) -> None:
"""Set up Sink.
This method is called on Sink creation, and creates the required Schema and
Table entities in the target database.
"""
self.append_only = self.key_properties is None or self.key_properties == []
if self.schema_name:
self.connector.prepare_schema(self.schema_name)
with self.connector._connect() as connection, connection.begin():
self.connector.prepare_table(
full_table_name=self.full_table_name,
schema=self.schema,
primary_keys=self.key_properties,
connection=connection,
as_temp_table=False,
)
def process_batch(self, context: dict) -> None:
"""Process a batch with the given batch context.
Writes a batch to the SQL target. Developers may override this method
in order to provide a more efficient upload/upsert process.
Args:
context: Stream partition or context dictionary.
"""
# Use one connection so we do this all in a single transaction
with self.connector._connect() as connection, connection.begin():
# Check structure of table
table: sa.Table = self.connector.prepare_table(
full_table_name=self.full_table_name,
schema=self.schema,
primary_keys=self.key_properties,
as_temp_table=False,
connection=connection,
)
# Create a temp table (Creates from the table above)
temp_table: sa.Table = self.connector.copy_table_structure(
full_table_name=self.temp_table_name,
from_table=table,
as_temp_table=True,
connection=connection,
)
# Insert into temp table
self.bulk_insert_records(
table=temp_table,
schema=self.schema,
primary_keys=self.key_properties,
records=context["records"],
connection=connection,
)
# Merge data from Temp table to main table
self.upsert(
from_table=temp_table,
to_table=table,
schema=self.schema,
join_keys=self.key_properties,
connection=connection,
)
# Drop temp table
self.connector.drop_table(table=temp_table, connection=connection)
def generate_temp_table_name(self):
"""Uuid temp table name."""
# sa.exc.IdentifierError: Identifier
# 'temp_test_optional_attributes_388470e9_fbd0_47b7_a52f_d32a2ee3f5f6'
# exceeds maximum length of 63 characters
# Is hit if we have a long table name, there is no limit on Temporary tables
# in postgres, used a guid just in case we are using the same session
return f"{str(uuid.uuid4()).replace('-', '_')}"
def sanitize_null_text_characters(self, data):
"""Sanitizes null characters by replacing \u0000 with \ufffd."""
def replace_null_character(d):
return d.replace("\u0000", "\ufffd")
if isinstance(data, str):
data = replace_null_character(data)
elif isinstance(data, dict):
for k in data:
if isinstance(data[k], str):
data[k] = replace_null_character(data[k])
elif isinstance(data, list):
for i in range(0, len(data)):
if isinstance(data[i], str):
data[i] = replace_null_character(data[i])
return data
def generate_copy_statement(
self,
full_table_name: str | FullyQualifiedName,
columns: list[sa.Column],
) -> str:
"""Generate a copy statement for bulk copy.
Args:
full_table_name: the target table name.
columns: the target table columns.
Returns:
A copy statement.
"""
columns_list = ", ".join(f'"{column.name}"' for column in columns)
sql: str = f'COPY "{full_table_name}" ({columns_list}) FROM STDIN'
return sql
def _do_copy(
self,
connection: sa.engine.Connection,
copy_statement: str,
columns: list[sa.Column],
data_to_copy: list[dict[str, t.Any]],
) -> None:
# Prepare to process the rows into csv. Use each column's bind_processor to do
# most of the work, then do the final construction of the csv rows ourselves
# to control exactly how values are converted and which ones are quoted.
column_bind_processors = {
column.name: column.type.bind_processor(connection.dialect)
for column in columns
}
# Use copy to run the copy statement.
# https://www.psycopg.org/psycopg3/docs/basic/copy.html
with connection.connection.cursor().copy(copy_statement) as copy: # type: ignore[attr-defined]
for row in data_to_copy:
processed_row = []
for row_column_name in row:
if column_bind_processors[row_column_name] is not None:
processed_row.append(
column_bind_processors[row_column_name](
row[row_column_name]
)
)
else:
processed_row.append(row[row_column_name])
copy.write_row(processed_row)
def bulk_insert_records( # type: ignore[override]
self,
table: sa.Table,
schema: dict,
records: t.Iterable[dict[str, t.Any]],
primary_keys: t.Sequence[str],
connection: sa.engine.Connection,
) -> int | None:
"""Bulk insert records to an existing destination table.
The default implementation uses a generic SQLAlchemy bulk insert operation.
This method may optionally be overridden by developers in order to provide
faster, native bulk uploads.
Args:
table: the target table object.
schema: the JSON schema for the new table, to be used when inferring column
names.
records: the input records.
primary_keys: the primary key columns for the table.
connection: the database connection.
Returns:
True if table exists, False if not, None if unsure or undetectable.
"""
columns = self.column_representation(schema)
data: list[dict[str, t.Any]] = []
# If append only is False, we only take the latest record one per primary key
if self.append_only is False:
unique_records: dict[tuple, dict] = {} # pk tuple: values
for record in records:
insert_record = {
column.name: (
self.sanitize_null_text_characters(record.get(column.name))
if self.connector.sanitize_null_text_characters
else record.get(column.name)
)
for column in columns
}
# No need to check for a KeyError here because the SDK already
# guarantees that all key properties exist in the record.
primary_key_tuple = tuple(record[key] for key in primary_keys)
unique_records[primary_key_tuple] = insert_record
data = list(unique_records.values())
else:
for record in records:
insert_record = {
column.name: (
self.sanitize_null_text_characters(record.get(column.name))
if self.connector.sanitize_null_text_characters
else record.get(column.name)
)
for column in columns
}
data.append(insert_record)
if self.config["use_copy"]:
copy_statement: str = self.generate_copy_statement(table.name, columns)
self.logger.info("Inserting with SQL: %s", copy_statement)
self._do_copy(connection, copy_statement, columns, data)
else:
insert: str = t.cast(
"str",
self.generate_insert_statement(
table.name,
columns,
),
)
self.logger.info("Inserting with SQL: %s", insert)
connection.execute(insert, data)
return True
def upsert(
self,
from_table: sa.Table,
to_table: sa.Table,
schema: dict,
join_keys: t.Sequence[str],
connection: sa.engine.Connection,
) -> int | None:
"""Merge upsert data from one table to another.
Args:
from_table: The source table.
to_table: The destination table.
schema: Singer Schema message.
join_keys: The merge upsert keys, or `None` to append.
connection: The database connection.
Return:
The number of records copied, if detectable, or `None` if the API does not
report number of records affected/inserted.
"""
if self.append_only is True:
# Insert
select_stmt = sa.select(from_table.columns).select_from(from_table)
insert_stmt = to_table.insert().from_select(
names=from_table.columns, select=select_stmt
)
connection.execute(insert_stmt)
else:
join_predicates = []
to_table_key: sa.Column
for key in join_keys:
from_table_key: sa.Column = from_table.columns[key]
to_table_key = to_table.columns[key]
join_predicates.append(from_table_key == to_table_key)
join_condition = sa.and_(*join_predicates)
where_predicates = []
for key in join_keys:
to_table_key = to_table.columns[key]
where_predicates.append(to_table_key.is_(None))
where_condition = sa.and_(*where_predicates)
select_stmt = (
sa.select(from_table.columns)
.select_from(from_table.outerjoin(to_table, join_condition))
.where(where_condition)
)
insert_stmt = sa.insert(to_table).from_select(
names=from_table.columns, select=select_stmt
)
connection.execute(insert_stmt)
# Update
where_condition = join_condition
update_columns = {}
for column_name in self.schema["properties"]:
from_table_column: sa.Column = from_table.columns[column_name]
to_table_column: sa.Column = to_table.columns[column_name]
update_columns[to_table_column] = from_table_column
update_stmt = (
sa.update(to_table).where(where_condition).values(update_columns)
)
connection.execute(update_stmt)
return None
def column_representation(
self,
schema: dict,
) -> list[sa.Column]:
"""Return a sqlalchemy table representation for the current schema."""
columns: list[sa.Column] = [
sa.Column(
property_name,
self.connector.to_sql_type(property_jsonschema),
)
for property_name, property_jsonschema in schema["properties"].items()
]
return columns
def generate_insert_statement(
self,
full_table_name: str | FullyQualifiedName,
columns: list[sa.Column], # type: ignore[override]
) -> str | Executable:
"""Generate an insert statement for the given records.
Args:
full_table_name: the target table name.
columns: the target table columns.
Returns:
An insert statement.
"""
metadata = sa.MetaData()
table = sa.Table(full_table_name, metadata, *columns)
return sa.insert(table)
def conform_name(self, name: str, object_type: str | None = None) -> str:
"""Conforming names of tables, schemas, column names."""
return name
@property
def schema_name(self) -> str | None:
"""Return the schema name or `None` if using names with no schema part.
Note that after the next SDK release (after 0.14.0) we can remove this
as it's already implemented upstream.
Returns:
The target schema name.
"""
# Look for a default_target_scheme in the configuration fle
default_target_schema: str = self.config.get("default_target_schema", None)
parts = self.stream_name.split("-")
# 1) When default_target_scheme is in the configuration use it
# 2) if the streams are in <schema>-<table> format use the
# stream <schema>
# 3) Return None if you don't find anything
if default_target_schema:
return default_target_schema
return self.conform_name(parts[-2], "schema") if len(parts) in {2, 3} else None
def activate_version(self, new_version: int) -> None:
"""Bump the active version of the target table.
Args:
new_version: The version number to activate.
"""
if self.config["activate_version"] is False:
self.logger.warning(
"An activate version message was received, but activate_version is set "
"to false so it was ignored."
)
return
if self._pending_batch:
self.logger.info(
"An activate version message for '%s' was received. Draining...",
self.stream_name,
)
draining_status = self.start_drain()
self.process_batch(draining_status)
self.mark_drained()
# There's nothing to do if the table doesn't exist yet
# (which it won't the first time the stream is processed)
if not self.connector.table_exists(self.full_table_name):
return
deleted_at = datetime.datetime.now(tz=datetime.timezone.utc)
with self.connector._connect() as connection, connection.begin():
# Theoretically these errors should never appear because we always create
# the columns, but it's useful as a sanity check. If anything changes later,
# the error that would otherwise appear is not as intuitive.
if not self.connector.column_exists(
full_table_name=self.full_table_name,
column_name=self.version_column_name,
connection=connection,
):
raise RuntimeError(
f"{self.version_column_name} is required for activate version "
"messages, but doesn't exist."
)
if not (
self.config["hard_delete"]
or self.connector.column_exists(
full_table_name=self.full_table_name,
column_name=self.soft_delete_column_name,
connection=connection,
)
):
raise RuntimeError(
f"{self.version_column_name} is required for soft deletion with "
"activate version messages, but doesn't exist."
)
metadata = sa.MetaData()
target_table = sa.Table(
self.table_name,
metadata,
autoload_with=connection.engine,
schema=self.schema_name,
)
self.logger.info("Hard delete: %s", self.config.get("hard_delete"))
if self.config["hard_delete"] is True:
delete_stmt = sa.delete(target_table).where(
sa.or_(
target_table.c[self.version_column_name].is_(None),
target_table.c[self.version_column_name] < new_version,
)
)
connection.execute(delete_stmt)
return
# Need to deal with the case where data doesn't exist for the version column
update_stmt = (
sa.update(target_table)
.values(
{
target_table.c[self.soft_delete_column_name]: bindparam(
"deletedate"
)
}
)
.where(
sa.and_(
sa.or_(
target_table.c[self.version_column_name]
< bindparam("version"),
target_table.c[self.version_column_name].is_(None),
),
target_table.c[self.soft_delete_column_name].is_(None),
)
)
)
bind_params = {"deletedate": deleted_at, "version": new_version}
connection.execute(update_stmt, bind_params)