forked from kangjianwei/LearningJDK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArrays.java
9446 lines (8809 loc) · 430 KB
/
Arrays.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import jdk.internal.HotSpotIntrinsicCandidate;
import jdk.internal.util.ArraysSupport;
import sun.security.action.GetBooleanAction;
import java.io.Serializable;
import java.lang.reflect.Array;
import java.security.AccessController;
import java.util.concurrent.ForkJoinPool;
import java.util.function.BinaryOperator;
import java.util.function.Consumer;
import java.util.function.DoubleBinaryOperator;
import java.util.function.IntBinaryOperator;
import java.util.function.IntFunction;
import java.util.function.IntToDoubleFunction;
import java.util.function.IntToLongFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.LongBinaryOperator;
import java.util.function.UnaryOperator;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
/**
* This class contains various methods for manipulating arrays (such as
* sorting and searching). This class also contains a static factory
* that allows arrays to be viewed as lists.
*
* <p>The methods in this class all throw a {@code NullPointerException},
* if the specified array reference is null, except where noted.
*
* <p>The documentation for the methods contained in this class includes
* brief descriptions of the <i>implementations</i>. Such descriptions should
* be regarded as <i>implementation notes</i>, rather than parts of the
* <i>specification</i>. Implementors should feel free to substitute other
* algorithms, so long as the specification itself is adhered to. (For
* example, the algorithm used by {@code sort(Object[])} does not have to be
* a MergeSort, but it does have to be <i>stable</i>.)
*
* <p>This class is a member of the
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
* Java Collections Framework</a>.
*
* @author Josh Bloch
* @author Neal Gafter
* @author John Rose
* @since 1.2
*/
/*
* 用来操作各类型数组的工具类,包含的方法类别如下:
*
* 【Array转List】asList
*
* 【流】 stream
* 【流迭代器】spliterator
*
* 【排序】 sort
* 【并行排序】parallelSort
*
* 【二分查找】binarySearch(要求数组元素有序)
*
* 【填充】fill
*
* 【复制】 copyOf
* 【范围复制】copyOfRange
*
* 【判等】 equals
* 【深度判等】deepEquals
*
* 【比较】 compare(返回值为-1、0、1,分别代表a<b、a==b、a>b)
* 【无符号比较】compareUnsigned
*
* 【失配比较】mismatch(返回首个失配元素的下标,返回-1表示相等)
*
* 【批量设置】 setAll(设置的值与下标相关)
* 【并行批量设置】parallelSetAll(设置的值与下标相关)
*
* 【哈希】 hashCode
* 【深度哈希】deepHashCode
*
* 【字符串化】 toString
* 【深度字符串化】deepToString
*
* 【并行前缀计算】parallelPrefix
*/
public class Arrays {
/**
* The minimum array length below which a parallel sorting
* algorithm will not further partition the sorting task. Using
* smaller sizes typically results in memory contention across
* tasks that makes parallel speedups unlikely.
*/
// 并行排序阙值。当待排序元素小于这个值时,不使用并行排序
private static final int MIN_ARRAY_SORT_GRAN = 1 << 13;
// Suppresses default constructor, ensuring non-instantiability.
private Arrays() {
}
/*▼ Array转List ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns a fixed-size list backed by the specified array. (Changes to
* the returned list "write through" to the array.) This method acts
* as bridge between array-based and collection-based APIs, in
* combination with {@link Collection#toArray}. The returned list is
* serializable and implements {@link RandomAccess}.
*
* <p>This method also provides a convenient way to create a fixed-size
* list initialized to contain several elements:
* <pre>
* List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");
* </pre>
*
* @param <T> the class of the objects in the array
* @param a the array by which the list will be backed
*
* @return a list view of the specified array
*/
@SafeVarargs
@SuppressWarnings("varargs")
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
/*▲ Array转List ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 流 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns a sequential {@link Stream} with the specified array as its
* source.
*
* @param <T> The type of the array elements
* @param array The array, assumed to be unmodified during use
*
* @return a {@code Stream} for the array
*
* @since 1.8
*/
// 构造处于源头(head)阶段的流(引用类型版本),数据源是array
public static <T> Stream<T> stream(T[] array) {
return stream(array, 0, array.length);
}
/**
* Returns a sequential {@link IntStream} with the specified array as its
* source.
*
* @param array the array, assumed to be unmodified during use
*
* @return an {@code IntStream} for the array
*
* @since 1.8
*/
// 构造处于源头(head)阶段的流(int类型版本),数据源是array
public static IntStream stream(int[] array) {
return stream(array, 0, array.length);
}
/**
* Returns a sequential {@link LongStream} with the specified array as its
* source.
*
* @param array the array, assumed to be unmodified during use
*
* @return a {@code LongStream} for the array
*
* @since 1.8
*/
// 构造处于源头(head)阶段的流(long类型版本),数据源是array
public static LongStream stream(long[] array) {
return stream(array, 0, array.length);
}
/**
* Returns a sequential {@link DoubleStream} with the specified array as its
* source.
*
* @param array the array, assumed to be unmodified during use
*
* @return a {@code DoubleStream} for the array
*
* @since 1.8
*/
// 构造处于源头(head)阶段的流(double类型版本),数据源是array
public static DoubleStream stream(double[] array) {
return stream(array, 0, array.length);
}
/**
* Returns a sequential {@link Stream} with the specified range of the
* specified array as its source.
*
* @param <T> the type of the array elements
* @param array the array, assumed to be unmodified during use
* @param fromIndex the first index to cover, inclusive
* @param toIndex index immediately past the last index to cover
*
* @return a {@code Stream} for the array range
*
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex} is
* negative, {@code toIndex} is less than
* {@code fromIndex}, or {@code toIndex} is greater than
* the array size
* @since 1.8
*/
// 构造处于源头(head)阶段的流(引用类型版本),数据源是array[fromIndex, toIndex)
public static <T> Stream<T> stream(T[] array, int fromIndex, int toIndex) {
return StreamSupport.stream(spliterator(array, fromIndex, toIndex), false);
}
/**
* Returns a sequential {@link IntStream} with the specified range of the
* specified array as its source.
*
* @param array the array, assumed to be unmodified during use
* @param fromIndex the first index to cover, inclusive
* @param toIndex index immediately past the last index to cover
*
* @return an {@code IntStream} for the array range
*
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex} is
* negative, {@code toIndex} is less than
* {@code fromIndex}, or {@code toIndex} is greater than
* the array size
* @since 1.8
*/
// 构造处于源头(head)阶段的流(int类型版本),数据源是array[fromIndex, toIndex)
public static IntStream stream(int[] array, int fromIndex, int toIndex) {
return StreamSupport.intStream(spliterator(array, fromIndex, toIndex), false);
}
/**
* Returns a sequential {@link LongStream} with the specified range of the
* specified array as its source.
*
* @param array the array, assumed to be unmodified during use
* @param fromIndex the first index to cover, inclusive
* @param toIndex index immediately past the last index to cover
*
* @return a {@code LongStream} for the array range
*
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex} is
* negative, {@code toIndex} is less than
* {@code fromIndex}, or {@code toIndex} is greater than
* the array size
* @since 1.8
*/
// 构造处于源头(head)阶段的流(long类型版本),数据源是array[fromIndex, toIndex)
public static LongStream stream(long[] array, int fromIndex, int toIndex) {
return StreamSupport.longStream(spliterator(array, fromIndex, toIndex), false);
}
/**
* Returns a sequential {@link DoubleStream} with the specified range of the
* specified array as its source.
*
* @param array the array, assumed to be unmodified during use
* @param fromIndex the first index to cover, inclusive
* @param toIndex index immediately past the last index to cover
*
* @return a {@code DoubleStream} for the array range
*
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex} is
* negative, {@code toIndex} is less than
* {@code fromIndex}, or {@code toIndex} is greater than
* the array size
* @since 1.8
*/
// 构造处于源头(head)阶段的流(double类型版本),数据源是array[fromIndex, toIndex)
public static DoubleStream stream(double[] array, int fromIndex, int toIndex) {
return StreamSupport.doubleStream(spliterator(array, fromIndex, toIndex), false);
}
/*▲ 流 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 流迭代器 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Returns a {@link Spliterator} covering all of the specified array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param <T> type of elements
* @param array the array, assumed to be unmodified during use
*
* @return a spliterator for the array elements
*
* @since 1.8
*/
// 构造"数组"Spliterator(引用类型版本),数据源是array
public static <T> Spliterator<T> spliterator(T[] array) {
return Spliterators.spliterator(array, Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
/**
* Returns a {@link Spliterator.OfInt} covering all of the specified array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param array the array, assumed to be unmodified during use
*
* @return a spliterator for the array elements
*
* @since 1.8
*/
// 构造"数组"Spliterator(int类型版本),数据源是array
public static Spliterator.OfInt spliterator(int[] array) {
return Spliterators.spliterator(array, Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
/**
* Returns a {@link Spliterator.OfLong} covering all of the specified array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param array the array, assumed to be unmodified during use
*
* @return the spliterator for the array elements
*
* @since 1.8
*/
// 构造"数组"Spliterator(long类型版本),数据源是array
public static Spliterator.OfLong spliterator(long[] array) {
return Spliterators.spliterator(array, Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
/**
* Returns a {@link Spliterator.OfDouble} covering all of the specified
* array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param array the array, assumed to be unmodified during use
*
* @return a spliterator for the array elements
*
* @since 1.8
*/
// 构造"数组"Spliterator(double类型版本),数据源是array
public static Spliterator.OfDouble spliterator(double[] array) {
return Spliterators.spliterator(array, Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
/**
* Returns a {@link Spliterator} covering the specified range of the
* specified array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param <T> type of elements
* @param array the array, assumed to be unmodified during use
* @param fromIndex the first index to cover, inclusive
* @param toIndex index immediately past the last index to cover
*
* @return a spliterator for the array elements
*
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex} is
* negative, {@code toIndex} is less than
* {@code fromIndex}, or {@code toIndex} is greater than
* the array size
* @since 1.8
*/
// 构造"数组"Spliterator(引用类型版本),数据源是array[fromIndex, toIndex)
public static <T> Spliterator<T> spliterator(T[] array, int fromIndex, int toIndex) {
return Spliterators.spliterator(array, fromIndex, toIndex, Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
/**
* Returns a {@link Spliterator.OfInt} covering the specified range of the
* specified array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param array the array, assumed to be unmodified during use
* @param fromIndex the first index to cover, inclusive
* @param toIndex index immediately past the last index to cover
*
* @return a spliterator for the array elements
*
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex} is
* negative, {@code toIndex} is less than
* {@code fromIndex}, or {@code toIndex} is greater than
* the array size
* @since 1.8
*/
// 构造"数组"Spliterator(int类型版本),数据源是array[fromIndex, toIndex)
public static Spliterator.OfInt spliterator(int[] array, int fromIndex, int toIndex) {
return Spliterators.spliterator(array, fromIndex, toIndex, Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
/**
* Returns a {@link Spliterator.OfLong} covering the specified range of the
* specified array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param array the array, assumed to be unmodified during use
* @param fromIndex the first index to cover, inclusive
* @param toIndex index immediately past the last index to cover
*
* @return a spliterator for the array elements
*
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex} is
* negative, {@code toIndex} is less than
* {@code fromIndex}, or {@code toIndex} is greater than
* the array size
* @since 1.8
*/
// 构造"数组"Spliterator(long类型版本),数据源是array[fromIndex, toIndex)
public static Spliterator.OfLong spliterator(long[] array, int fromIndex, int toIndex) {
return Spliterators.spliterator(array, fromIndex, toIndex, Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
/**
* Returns a {@link Spliterator.OfDouble} covering the specified range of
* the specified array.
*
* <p>The spliterator reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
* {@link Spliterator#IMMUTABLE}.
*
* @param array the array, assumed to be unmodified during use
* @param fromIndex the first index to cover, inclusive
* @param toIndex index immediately past the last index to cover
*
* @return a spliterator for the array elements
*
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex} is
* negative, {@code toIndex} is less than
* {@code fromIndex}, or {@code toIndex} is greater than
* the array size
* @since 1.8
*/
// 构造"数组"Spliterator(double类型版本),数据源是array[fromIndex, toIndex)
public static Spliterator.OfDouble spliterator(double[] array, int fromIndex, int toIndex) {
return Spliterators.spliterator(array, fromIndex, toIndex, Spliterator.ORDERED | Spliterator.IMMUTABLE);
}
/*▲ 流迭代器 ████████████████████████████████████████████████████████████████████████████████┛ */
/*▼ 排序 ████████████████████████████████████████████████████████████████████████████████┓ */
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
// 将数组元素按升序排列
public static void sort(char[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
// 将数组元素按升序排列
public static void sort(byte[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
// 将数组元素按升序排列
public static void sort(short[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
// 将数组元素按升序排列
public static void sort(int[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
// 将数组元素按升序排列
public static void sort(long[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on all float
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
* other value and all {@code Float.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
// 将数组元素按升序排列
public static void sort(float[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on all double
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
* other value and all {@code Double.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
// 将数组元素按升序排列
public static void sort(double[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
/**
* Sorts the specified array of objects into ascending order, according
* to the {@linkplain Comparable natural ordering} of its elements.
* All elements in the array must implement the {@link Comparable}
* interface. Furthermore, all elements in the array must be
* <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must
* not throw a {@code ClassCastException} for any elements {@code e1}
* and {@code e2} in the array).
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will
* not be reordered as a result of the sort.
*
* <p>Implementation note: This implementation is a stable, adaptive,
* iterative mergesort that requires far fewer than n lg(n) comparisons
* when the input array is partially sorted, while offering the
* performance of a traditional mergesort when the input array is
* randomly ordered. If the input array is nearly sorted, the
* implementation requires approximately n comparisons. Temporary
* storage requirements vary from a small constant for nearly sorted
* input arrays to n/2 object references for randomly ordered input
* arrays.
*
* <p>The implementation takes equal advantage of ascending and
* descending order in its input array, and can take advantage of
* ascending and descending order in different parts of the same
* input array. It is well-suited to merging two or more sorted arrays:
* simply concatenate the arrays and sort the resulting array.
*
* <p>The implementation was adapted from Tim Peters's list sort for Python
* (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
* TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic
* Sorting and Information Theoretic Complexity", in Proceedings of the
* Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
* January 1993.
*
* @param a the array to be sorted
*
* @throws ClassCastException if the array contains elements that are not
* <i>mutually comparable</i> (for example, strings and integers)
* @throws IllegalArgumentException (optional) if the natural
* ordering of the array elements is found to violate the
* {@link Comparable} contract
*/
// 将数组元素按升序排列
public static void sort(Object[] a) {
if(LegacyMergeSort.userRequested) {
legacyMergeSort(a);
} else {
ComparableTimSort.sort(a, 0, a.length, null, 0, 0);
}
}
/**
* Sorts the specified array of objects according to the order induced by
* the specified comparator. All elements in the array must be
* <i>mutually comparable</i> by the specified comparator (that is,
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
* for any elements {@code e1} and {@code e2} in the array).
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will
* not be reordered as a result of the sort.
*
* <p>Implementation note: This implementation is a stable, adaptive,
* iterative mergesort that requires far fewer than n lg(n) comparisons
* when the input array is partially sorted, while offering the
* performance of a traditional mergesort when the input array is
* randomly ordered. If the input array is nearly sorted, the
* implementation requires approximately n comparisons. Temporary
* storage requirements vary from a small constant for nearly sorted
* input arrays to n/2 object references for randomly ordered input
* arrays.
*
* <p>The implementation takes equal advantage of ascending and
* descending order in its input array, and can take advantage of
* ascending and descending order in different parts of the same
* input array. It is well-suited to merging two or more sorted arrays:
* simply concatenate the arrays and sort the resulting array.
*
* <p>The implementation was adapted from Tim Peters's list sort for Python
* (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
* TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic
* Sorting and Information Theoretic Complexity", in Proceedings of the
* Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
* January 1993.
*
* @param <T> the class of the objects to be sorted
* @param a the array to be sorted
* @param c the comparator to determine the order of the array. A
* {@code null} value indicates that the elements'
* {@linkplain Comparable natural ordering} should be used.
*
* @throws ClassCastException if the array contains elements that are
* not <i>mutually comparable</i> using the specified comparator
* @throws IllegalArgumentException (optional) if the comparator is
* found to violate the {@link Comparator} contract
*/
// 将数组元素按外部比较器的比较规则进行排序
public static <T> void sort(T[] a, Comparator<? super T> c) {
if(c == null) {
sort(a);
} else {
if(LegacyMergeSort.userRequested) {
legacyMergeSort(a, c);
} else {
TimSort.sort(a, 0, a.length, c, null, 0, 0);
}
}
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
// 将数组指定范围的元素按升序排列
public static void sort(char[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
// 将数组指定范围的元素按升序排列
public static void sort(byte[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
// 将数组指定范围的元素按升序排列
public static void sort(short[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
// 将数组指定范围的元素按升序排列
public static void sort(int[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
// 将数组指定范围的元素按升序排列
public static void sort(long[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on all float
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
* other value and all {@code Float.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
// 将数组指定范围的元素按升序排列
public static void sort(float[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on all double
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
* other value and all {@code Double.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
// 将数组指定范围的元素按升序排列
public static void sort(double[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
}
/**
* Sorts the specified range of the specified array of objects into
* ascending order, according to the
* {@linkplain Comparable natural ordering} of its
* elements. The range to be sorted extends from index
* {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive.
* (If {@code fromIndex==toIndex}, the range to be sorted is empty.) All
* elements in this range must implement the {@link Comparable}
* interface. Furthermore, all elements in this range must be <i>mutually
* comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
* {@code ClassCastException} for any elements {@code e1} and
* {@code e2} in the array).
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will
* not be reordered as a result of the sort.
*
* <p>Implementation note: This implementation is a stable, adaptive,
* iterative mergesort that requires far fewer than n lg(n) comparisons
* when the input array is partially sorted, while offering the
* performance of a traditional mergesort when the input array is
* randomly ordered. If the input array is nearly sorted, the
* implementation requires approximately n comparisons. Temporary
* storage requirements vary from a small constant for nearly sorted
* input arrays to n/2 object references for randomly ordered input
* arrays.
*
* <p>The implementation takes equal advantage of ascending and
* descending order in its input array, and can take advantage of
* ascending and descending order in different parts of the same
* input array. It is well-suited to merging two or more sorted arrays:
* simply concatenate the arrays and sort the resulting array.
*
* <p>The implementation was adapted from Tim Peters's list sort for Python
* (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
* TimSort</a>). It uses techniques from Peter McIlroy's "Optimistic
* Sorting and Information Theoretic Complexity", in Proceedings of the
* Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
* January 1993.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex} or
* (optional) if the natural ordering of the array elements is
* found to violate the {@link Comparable} contract
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
* {@code toIndex > a.length}
* @throws ClassCastException if the array contains elements that are
* not <i>mutually comparable</i> (for example, strings and
* integers).
*/
// 将数组指定范围的元素按升序排列
public static void sort(Object[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
if(LegacyMergeSort.userRequested) {
legacyMergeSort(a, fromIndex, toIndex);
} else {
ComparableTimSort.sort(a, fromIndex, toIndex, null, 0, 0);
}
}
/**
* Sorts the specified range of the specified array of objects according
* to the order induced by the specified comparator. The range to be
* sorted extends from index {@code fromIndex}, inclusive, to index
* {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the
* range to be sorted is empty.) All elements in the range must be
* <i>mutually comparable</i> by the specified comparator (that is,
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
* for any elements {@code e1} and {@code e2} in the range).
*
* <p>This sort is guaranteed to be <i>stable</i>: equal elements will