-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathAlphaZeroCoach.py
192 lines (158 loc) · 7.87 KB
/
AlphaZeroCoach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from collections import deque
from Arena import Arena
from MCTS import MCTS
import numpy as np
from pytorch_classification.utils import Bar, AverageMeter
import time, os, sys
from pickle import Pickler, Unpickler
from random import shuffle
from tictactoe import TicTacToePlayers as tictacplayers
from othello import OthelloPlayers as othelloplayers
from gobang import GobangPlayers as gobangplayers
from connect4 import Connect4Players as connect4players
import multiprocessing as mp
import copy
class AlphaZeroCoach():
"""
This class executes the self-play + learning. It uses the functions defined
in Game and NeuralNet. args are specified in main.py.
"""
def __init__(self, game, nnet, args):
self.game = game
self.nnet = nnet
self.pnet = self.nnet.__class__(self.game) # the competitor network
self.args = args
self.mcts = MCTS(self.game, self.nnet, self.args, mcts=True)
self.trainExamplesHistory = [] # history of examples from args.numItersForTrainExamplesHistory latest iterations
self.counter = 0
def executeEpisode(self):
"""
This function executes one episode of self-play, starting with player 1.
As the game is played, each turn is added as a training example to
trainExamples. The game is played till the game ends. After the game
ends, the outcome of the game is used to assign values to each example
in trainExamples.
It uses a temp=1 if episodeStep < tempThreshold, and thereafter
uses temp=0.
Returns:
trainExamples: a list of examples of the form (canonicalBoard,pi,v)
pi is the MCTS informed policy vector, v is +1 if
the player eventually won the game, else -1.
"""
trainExamples = []
board = self.game.getInitBoard()
self.curPlayer = 1
episodeStep = 0
while True:
episodeStep += 1
canonicalBoard = self.game.getCanonicalForm(board, self.curPlayer)
temp = int(episodeStep < self.args.tempThreshold)
pi = self.mcts.getActionProb(canonicalBoard, temp=temp)
sym = self.game.getNoSymmetries(canonicalBoard, pi)
for b, p in sym:
trainExamples.append([b, self.curPlayer, p, None])
action = np.random.choice(len(pi), p=pi)
board, self.curPlayer = self.game.getNextState(board, self.curPlayer, action)
r = self.game.getGameEnded(board, self.curPlayer)
if r != 0:
return [(x[0], x[2], r * ((-1) ** (x[1] != self.curPlayer))) for x in trainExamples]
''' Use this function to decide the players that will be faced by the network at each iteration'''
def learn(self):
"""
Performs numIters iterations with numEps episodes of self-play in each
iteration. After every iteration, it retrains neural network with
examples in trainExamples (which has a maximium length of maxlenofQueue).
It then pits the new neural network against the old one and accepts it
only if it wins >= updateThreshold fraction of games.
"""
begining=1
if self.args.load_model == True:
self.loadTrainExamples()
file=open(self.args.trainExampleCheckpoint+"loopinformation","r+")
lines=file.readlines()
begining=lines[0]
file.close()
for i in range(int(begining), self.args.numIters + 1):
fileLoopInformation = open(self.args.trainExampleCheckpoint + "loopinformation", "w+")
fileLoopInformation.write(str(i))
fileLoopInformation.close()
# bookkeeping
print('------ITER ' + str(i) + '------')
# examples of the iteration
iterationTrainExamples = deque([], maxlen=self.args.maxlenOfQueue)
eps_time = AverageMeter()
bar = Bar('Self Play', max=self.args.numEps)
end = time.time()
for eps in range(self.args.numEps):
iterationTrainExamples += self.executeEpisode()
# bookkeeping + plot progress
eps_time.update(time.time() - end)
end = time.time()
bar.suffix = '({eps}/{maxeps}) Eps Time: {et:.3f}s | Total: {total:} | ETA: {eta:}'.format(eps=eps + 1,
maxeps=self.args.numEps,
et=eps_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td)
bar.next()
bar.finish()
# save the iteration examples to the history
self.trainExamplesHistory.append(iterationTrainExamples)
if len(self.trainExamplesHistory) > self.args.numItersForTrainExamplesHistory:
print("len(trainExamplesHistory) =", len(self.trainExamplesHistory),
" => remove the oldest trainExamples")
self.trainExamplesHistory.pop(0)
# backup history to a file
# NB! the examples were collected using the model from the previous iteration, so (i-1)
self.saveTrainExamples(i - 1)
# shuffle examlpes before training
trainExamples = []
for e in self.trainExamplesHistory:
trainExamples.extend(e)
shuffle(trainExamples)
filename = "AlphaZerocurent" + str(i) + "temp:iter" + str(self.args.numIters) + ":eps" + str(self.args.numEps) + \
":dim" + str(self.game.n) + ".pth.tar"
self.nnet.train(trainExamples)
self.nnet.save_checkpoint(folder=self.args.checkpoint, filename=filename)
self.mcts.clear()
del self.mcts
self.mcts = MCTS(self.game, self.nnet, self.args, mcts=True) # reset search tree
def getCheckpointFile(self, iteration):
'''
:param iteration: the number of current iteration
:return: a name composed of iteration for saving files
'''
return 'checkpoint_' + str(iteration) + '.pth.tar'
def saveTrainExamples(self, iteration):
'''
:param iteration: the number of current iteration which will be used to name the example file in an organised
way
:return: nothing
Save the example file in an organised way in order to provide a way of reusing the examples in case of
unexpected failure
'''
folder = self.args.trainExampleCheckpoint
if not os.path.exists(folder):
os.makedirs(folder)
filename = os.path.join(folder, self.getCheckpointFile(iteration) + ".examples")
with open(filename, "wb+") as f:
Pickler(f).dump(self.trainExamplesHistory)
Pickler(f).clear_memo()
f.close()
def loadTrainExamples(self):
'''
:return: doesn't return anything
It has the role of loading the examples from the file in order to be reused when the program starts again,
after maybe a failure, or unexpected interruption
'''
modelFile = os.path.join(self.args.load_folder_file[0], self.args.load_folder_file[1])
examplesFile = modelFile + ".examples"
if not os.path.isfile(examplesFile):
print(examplesFile)
r = input("File with trainExamples not found. Continue? [y|n]")
if r != "y":
sys.exit()
else:
print("File with trainExamples found. Read it.")
with open(examplesFile, "rb") as f:
self.trainExamplesHistory = Unpickler(f).load()
f.close()